BMST 2025: p-ADIC NUMBERS **EXERCISE SHEET 2**

- Exercise 1. (1) Let $p \neq 2$ be a prime and let $u \in \mathbb{Z}_p$ such that $u \equiv 1$ mod (p). Show that for any $n \ge 1$ not divisible by p, u is an n-th power in \mathbb{Z}_p^{\times} .
 - (2) Let $p \neq 2$. Show that there is an element of $\mathbb{Z}/(p^2)$ that is not a p-th power; deduce a counterexample to the above for n = p. (*Hint*: you might want to show that if $v \equiv 1 \mod (p)$ then $v^p \equiv 1 \mod (p^2)$.)
 - (3) Let $p \neq 2$ be a prime and let $u \in \mathbb{Z}_p$ such that $u \equiv 1 \mod (p^2)$. Show that u has a p-th root. (*Hint*: Write $u = 1 + kp^2$ and consider the element 1 + kp.)

Remark. We actually have the sharper result that u has a p-th root if and only if u is a p-th power modulo p^2 .

- (1) Let $u \in \mathbb{Q}_p \setminus \{0\}$ and write $u = p^k v, k \in \mathbb{Z}, v \in \mathbb{Z}_p^{\times}$. Exercise 2. Show that u is a square if and only if
 - (i) for p odd, k is even and v is a square modulo p;
 - (ii) for p = 2, k is even and $v \equiv 1 \mod (8)$.
 - (2) (If you know about quadratic residues) Denote by $(\mathbb{Q}_p^{\times})^2$ the multiplicative group of non-zero elements which are squares. Show that for $p \neq 2$, $\mathbb{Q}_p^{\times /}(\mathbb{Q}_p^{\times})^2 \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. (3) Show that $\mathbb{Q}_2^{\times /}(\mathbb{Q}_2^{\times})^2 \simeq \mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/2$.

Exercise 3. Factor the polynomial $P(X) = X^4 - 7X^3 + 2X^2 + 2X + 1 \in \mathbb{Z}[X]$ into a product of irreducible polynomials over \mathbb{F}_3 . Show that P has a root in \mathbb{Z}_3 .

Exercise 4 (If you know about quadratic residues). Show that the equation $(X^2-2)(X^2-17)(X^2-34)$ has roots in \mathbb{Q}_p for all p prime and in \mathbb{R} , but not in \mathbb{Q} . (*Hint*: first treat the case of \mathbb{R} and \mathbb{Q}_2 , then do a general argument for \mathbb{Q}_p using that $34 = 2 \times 17$.)

In a non-archimedean field with a discrete valuation, a generator π of the maximal ideal \mathfrak{m} , i.e. an element of maximal absolute value strictly less than 1, is called a uniformizer.

Exercise 5. (1) Let K be a complete non-archimedean field with a discrete valuation. Let π be a uniformizer. Show the following version of Eisenstein's criterion: for $f = \sum_{k=0}^{n} a_k X^k \in \mathcal{O}_K[X]$, if $a_n \neq 0$ mod (π) , $a_k \equiv 0 \mod (\pi)$ for all k < n and $a_0 \not\equiv 0 \mod (\pi^2)$ then f is irreducible in $\mathcal{O}_K[X]$ and in K[X]. (for that last statement, you will need Gauss' lemma)

(2) Deduce that the *p*-th cyclotomic polynomial Φ_p is irreducible over \mathbb{Q}_p for $p \neq 2$ prime. (*Hint*: the usual trick is to look at $\Phi_p(X+1)$.)

Exercise 6 (Uses Hensel's lemma for polynomials and the Gauss norm). Let K be a complete non-archimedean field. Show that if $f \in \mathcal{O}_K[X]$ is monic, then

- (1) f is irreducible in $\mathcal{O}_K[X]$ if and only if it is irreducible in K[X];
- (2) if f is irreducible modulo \mathfrak{m} , then f is irreducible in $\mathcal{O}_K[X]$;
- (3) conversely, if f is irreducible in $\mathcal{O}_K[X]$ and has no multiple roots modulo \mathfrak{m} , then it is irreducible modulo \mathfrak{m} .

Exercise 7. Let K be a complete normed field and consider the subring $\mathcal{O}_K \langle T \rangle := \left\{ f = \sum a_k T^k \in \mathcal{O}_K[[T]], |a_k| \xrightarrow[n \to \infty]{} 0 \right\}$ of formal power series with coefficients in \mathcal{O}_K converging on the closed unit ball, i.e. on \mathcal{O}_K .

- (1) Show that for any $f \in \mathcal{O}_K \langle T \rangle$, $f(X + Y) = f(X) + f'(X)Y + R(X,Y)Y^2$ for some $Y \in \mathcal{O}_K \langle T \rangle$.
- (2) Show that for any $f \in \mathcal{O}_K \langle T \rangle$ and $x, y \in \mathcal{O}_K$, we have

$$|f(x) - f(y)| \le |x - y|.$$

In particular f defines a uniformly continuous function $\mathcal{O}_K \to K$.

(3) Deduce that Hensel's lemma applies to formal power series in $\mathcal{O}_K\langle T \rangle$.

Exercise 8 (Canonical lifts). Let p be a prime and let K be a non-archimedean normed field such that $p \in \mathfrak{m}$. Recall that for $1 \leq k \leq p$, the binomial coefficient $\binom{p}{k}$ is divisible by p.

- (1) Show that for $x, y \in \mathcal{O}_K$, if |x-y| < 1 then for $t = \max(|p|, |x-y|) < 1$ we have $|x^{p^k} y^{p^k}| \le t^{k+1}$ for all $k \ge 1$.
- (2) Reformulate this in terms of congruences in the case where the valuation is discrete.
- (3) Suppose that K is complete and that the residue field k of K is perfect, that is such that any $x \in k$ has a (unique) p-th root (i.e. $y \mapsto y^p$ is an automorphism of k, since p = 0 in k). For $x \in k$, let $x^{p^{-k}}$ denote its unique p^k -th root. For each $k \in \mathbb{N}$, choose a lift $\widetilde{x^{p^{-k}}} \in \mathcal{O}_K$ of $x^{p^{-k}}$. Show that the expression

$$\tau(x) := \lim_{k \to \infty} \left(\widetilde{x^{p^{-k}}} \right)^p$$

is well-defined and independent of the choice of lifts.

- (4) Deduce that the map $\tau : k \to \mathcal{O}_K$ is a multiplicative injection with image a complete set of representative of classes modulo \mathfrak{m} .
- (5) Show that if K is of characteristic p, τ is a field embedding of k in K.
- (6) If the valuation on K is discrete, let $\pi \in \mathfrak{m}$ be a uniformizer. Show that every element of \mathcal{O}_K has a unique representation in base π with coefficients in the image of τ .

(7) Deduce that if K is a complete non-archimedean normed field of characteristic p with a discrete valuation, there are isomorphisms $\mathcal{O}_K \simeq k[[X]]$ and $K \simeq k((X))$ inducing the X-adic valuation on k[[X]] and k((X)).

Exercise 9 (End of classification of locally compact non-archimedean fields. You need to have read section 9 of the notes). Let K be a locally compact non-archimedean field with a non-trivial absolute value.

- (1) If K is of characteristic p prime, use the previous exercise to conclude that K is isomorphic to $\mathbb{F}_q((T))$ with the T-adic absolute value, for q a power of p.
- (2) Suppose now that K is of characteristic 0. Show that K contains \mathbb{Q}_p for a prime p.
- (3) Using Riesz's theorem, deduce that K is a finite extension of \mathbb{Q}_p .