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1. Normed fields

De�nition 1.1. An absolute value on a �eld K is a map | · | : K → R+ such
that

(1) |x| = 0 if and only if x = 0,
(2) |xy| = |x| |y| for all x,y ∈ K,
(3) |x+ y| ≤ |x|+ |y| for all x, y ∈ K.

If moreover, the absolute value satis�es the following strong triangle inequal-
ity

(3′) |x+ y| ≤ max(|x| , |y|) for all x, y ∈ K
1
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then we say that it is ultrametric or non-archimedean. A normed �eld is
a �eld equipped with an absolute value1, an ultrametric or nonarchimedean
(valued) �eld is a �eld equipped with an ultrametric absolute value.

Observe that we have |1|2 =
∣∣12∣∣ = |1|, the only positive real solution of

which is 1, so |1| = 1. Moreover, |−1|2 =
∣∣(−1)2

∣∣ = |1| = 1, so that |−1| = 1.

Example 1. The usual absolute value |·|∞ on Q or R, de�ned by |x|∞ = x
if x ≥ 0 and |x|∞ = −x if x < 0.

Example 2. The trivial absolute value |·|triv, with |x|triv = 1 if x ̸= 0 and
0 if x = 0.

Example 3. Let vp : Z → N∪{∞} be the map that sends 0 to ∞ and n ̸= 0

to max
{
k, pk divides n

}
. Then vp satis�es

(1) vp(n) = ∞ if and only if n = 0,
(2) vp(nm) = vp(n) + vp(m),
(3) vp(n+m) ≥ min(vp(n), vp(m))

We say that vp is a (discrete) valuation on Z. The map vp extends uniquely to
a map vp : Q → Z ∪ {∞} satisfying the same properties by letting vp(

a
b ) =

vp(a) − vp(b). Then if we let |·|p : Q → R+ such that |x|p = p−vp(x), we

observe readily that |·|p is an ultrametric absolute value on Q, called the
p-adic absolute value.

Example 4. Let K be a �eld. We can de�ne vT : K[T ] → N ∪ {∞} by
vT (P ) = max

{
k, T k divides P

}
and vT (0) = ∞. It satis�es (1) − (3) in

the example above and so again, it extends to a map on the �eld of fractions
K(T ). The function vT on K(T ) measures the order of vanishing at 0 of a
rational function: for a rational function R(T ) = T kS(T ) with k ∈ Z and S
a rational fraction that has no pole or zero at T = 0, i.e. that can be written
with a numerator and denominator that do not vanish at 0, then vT (R) = k.

For any ρ > 1, the function |R|T,ρ = ρ−vT (P ) is an absolute value on K(T ).
More generally, this works for a prime element P in a principal ideal domain
A, to de�ne an absolute value |·|P,ρ on its �eld of fractions Frac(A).

Example 5. The degree function on K[T ] satis�es

(1) deg(P ) = −∞ if and only if P = 0,
(2) deg(PQ) = deg(P ) + deg(Q) and
(3) deg(P +Q) ≤ max(deg(P ),deg(Q)).

Hence −deg satis�es (1) − (3) above and by the same argument we get an
absolute value |·|deg,ρ on K(T ). If we put the formal variable S = T−1 then

we have an identi�cation K(S) = K(T ) and using the above notation, we
�nd |·|deg,ρ = |·|S,ρ = |·|T−1,ρ. Thus in a sense −deg measures the order of

vanishing at T−1 = 0, i.e. at T = ∞.

1Sometimes this is called a normed �eld, to distinguish with the case where we only

require |xy| ≤ |x| |y| instead of (2), but we will reserve that term for something else later.
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Example 6. We will see later that given a non-trivial non-archimedean
absolute value |·|K on a �eld K and ρ > 0, the functions

|·|ρ :

{
K[T ] −→ R+∑n
i=0 aiT

i 7→ max(|ai|K ρi),

usually called Gauss norms, extend uniquely to an absolute value on K(T )
that agrees with |·|K on constants K ⊂ K(T ).

De�nition�Proposition 1.2. We say that two absolute values |·|1 and |·|2
on K are equivalent if any of the following equivalent conditions holds:

(1) a sequence in K converges for |·|1 if and only if converges for |·|2;
(2) the topologies induced by the two absolute values are the same;
(3) for all x ∈ K, |x|1 < 1 if and only if |x|2 < 1;
(4) there exists α > 0 such that |·|1 = |·|α2 .

In item 4 above, be careful that the converse does not always hold: if |·|∞
is the standard absolute value on Q, then |·|α∞ is not an absolute value for
α > 1, but it is for 0 < α ≤ 1. On the other hand, if |·| is an ultrametric
absolute value on a �eld, then any power of it is still an ultrametric absolute
value.

The reader might wonder what are the possible absolute values on Q. The
following theorem states that there are not so many, up to equivalence:

Theorem 1.3 (Ostrowski). Every non-trivial absolute values on Q is equiv-
alent to either the archimedean absolute value |·|∞ or the p-adic absolute
value |·|p for some prime number p; moreover the latter are pairwise non-
equivalent.

An absolute value on a �eld K de�nes a metric on K by letting d(x, y) =
|x− y|. If |·| is ultrametric, then that metric satis�es the strong triangle
inequality d(x, z) ≤ max(d(x, y), d(y, z)) for all x, y, z ∈ K. More generally,
there is a similar notion of ultrametric space, which is a set X equipped with
a metric d satisfying the above strong triangle inequality.

In an ultrametric space, the balls do not behave as usual.

Lemma 1.4. Let (X, d) be an ultrametric space and let x, y, z ∈ X. If
d(x, y) ̸= d(y, z) then d(x, z) = max(d(x, y), d(y, z)).

Proof. Without loss of generality, let us assume that d(x, y) < d(y, z). By
the strong triangle inequality, we have

d(x, z) ≤ max(d(x, y), d(y, z)) = d(y, z).

On the other hand,

d(y, z) ≤ max(d(x, y), d(x, z)).

If we had d(x, y) ≥ d(x, z), we would �nd d(y, z) ≤ d(x, y), a contradiction.
Therefore max(d(x, y), d(x, z)) = d(x, z) and piecing everything together we
�nd

d(y, z) ≤ d(x, z) ≤ d(y, z),
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whence the result. □

We will denote by B(x, r) the open ball around x of radius r, B̄(x, r)
the closed ball, and C(x, r) := {y ∈ X, d(x, y) = r} the �boundary� of the
closed ball.

Proposition 1.5. Let (X, d) be an ultrametric space and let x ∈ X, r > 0.

(1) For all y ∈ B(x, r), we have B(x, r) = B(y, r).
(2) For all y ∈ B̄(x, r) then B̄(x, r) = B̄(y, r).
(3) If y ∈ C(x, r) then B̄(y, r′) ⊂ C(x, r) for any 0 < r′ < r.
(4) For y /∈ B(x, r), put ε := d(y, x) ≥ r > 0. Then B(y, ε) ⊂

X\B(x, r).
(5) Let B(x, r) and B(y, r′) are two open balls with non-empty intersec-

tion, then B(x, r) ⊆ B(y, r′) or B(y, r′) ⊂ B(x, r).

Proof. We will prove (1), (3) and (5).

(1) Let y ∈ B(x, r), and let z ∈ B(y, r). Then

d(z, x) ≤ max(d(z, y), d(y, x)) < r

so z ∈ B(x, r), showing B(y, r) ⊆ B(x, r). But x ∈ B(y, r) so the
symmetric argument shows the reverse inclusion.

(3) Let y ∈ C(x, r), that is d(y, x) = r, let r′ < r and let z ∈ B̄(y, r′).
Since d(z, y) ≤ r′ < r = d(y, x), the lemma above tells us that
d(z, x) = d(y, x) = r, so z ∈ C(x, r), as we claimed.

(5) Let z ∈ B(x, r)∩B(y, r′). Without loss of generality, we can assume
that r ≥ r′. But then by (1) we �nd B(x, r) = B(z, r) ⊇ B(z, r′) =
B(y, r′).

□

The above says that any point of an open or closed ball is the center of
that ball, and any point in the boundary of a closed ball has a closed ball
with non-zero radius around it. In particular, the closed balls and their
�boundary� are open. The fourth point says that open balls are closed.

Proposition 1.6. Let (X, d) be an ultrametric space with at least two ele-
ments, and let T ⊂ X be a subset with at least two elements, with the induced
topology. Then T is not connected.

Proof. Let x ̸= y ∈ T and put r = d(x, y)/2. Note that T inherits the metric
from X and that the induced topology on T from X is also the topology
induced by the metric. Then B(x, r) is non-empty, open and closed, and its
completement is also non-empty because it contains y, showing that T is not
connected. □

We say that a topological space with the above property is totally discon-
nected.
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2. Completions

De�nition 2.1. Let (X, d) be a metric space. Recall that a sequence (xn)n∈N
in X is called a Cauchy sequence if for all ε > 0, there exists N ∈ N such
that for all n,m ≥ N , d(xn, xm) ≤ ε.

A metric space (X, d) is called complete if every Cauchy sequence in X
admits a limit.

A Cauchy sequence is a sequence whose terms get arbitrarily close to-
gether.

De�nition 2.2. Let (K, |·|K) be a normed �eld. A completion of K is a
normed �eld (L, |·|L) together with an isometric �eld embedding ι : K → L
(i.e., ι is an injective ring morphism such that |ι(x)|L = |x|K for all x ∈ K)
such that ι(K) is a dense subset in L and L is complete for the metric induced
by |·|L (meaning that any Cauchy sequence converges in L).

As an example, R with the usual absolute value |·|∞ is a completion of
Q with the usual absolute value. In the above de�nition, we talk about a
completion, but as we explain below, completions are essentially unique, so
going forward we will speak about the completion of a normed �eld. Recall
that on a metric space (X, d), and in particular on normed �elds, the metric
d : X ×X → R≥0 is uniformly continuous for the product topology (i.e. for
the sup metric d∞) because of the reverse triangle inequality

∀x, y, z ∈ X, |d(x, y)− d(y, z)| ≤ d(x, z),

which implies that for all (x, y), (x′, y′) ∈ X:∣∣d(x, y)− d(x′, y′)
∣∣ = ∣∣d(x, y)− d(x, y′) + d(x, y′)− d(x′, y′)

∣∣
≤
∣∣d(x, y)− d(x, y′)

∣∣+ ∣∣d(x, y′)− d(x′, y′)
∣∣

≤ d(x, x′) + d(y, y′)

≤ 2max(d(x, x), d(y, y′)) =: 2 · d∞((x, x′), (y, y′)).

Proposition 2.3. Let (K, |·|K) be a normed �eld, let (L, |·|L , ι) be a comple-
tion of K and let (E, |·|E) be a complete normed �eld with an isometric �eld
homomorphism f : (K, |·|K) → (E, |·|E). Then f extends uniquely through ι
to an isometric �eld homomorphism g : (L, |·|L) → (E, |·|E).

Proof. Let x ∈ L. Observe that if g exists, then g is isometric so in particular
continuous, and thus if x = lim ι(xn) for xn ∈ K, then g(x) = lim g(ι(xn)) =
lim f(xn), so g is completely determined by f , which shows the uniqueness.

Let us abuse notation and consider ι as an inclusion of sets. Since K is
dense in L, any x in L is the limit of a sequence in K, and we de�ne

g(x) := lim
n→∞

f(xn)

We have to show that the limit exists and that this expression does not
depend of the choice of a sequence in K converging to x. First, since (xn)n∈N
converges in L, it is a Cauchy sequence in K. Then (f(xn))n∈N is a Cauchy
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sequence in E: for any ε > 0, there exists N ∈ N such that |xn − xm|K ≤ ε
for all n,m ≥ N ; but f is an isometric �eld morphism, so we get also

|f(xn)− f(xm)|E = |f(xn − xm)|E = |xn − xm|K ≤ ε

for all n,m ≥ N . Since E is complete, the Cauchy sequence (f(xn))n∈N
converges. If now (xn)n∈N and (yn)n∈N are two sequences in K converging
to x in L, then |xn − yn| −−−→

n→∞
0 so also |f(xn)− f(yn)|L −−−→

n→∞
0, showing

that their image under f have the same limit g(x).
The map g is an isometry: if x ∈ L is the limit x = limxn of a sequence

(xn)n∈N in K, we �nd

|g(x)|E =
∣∣∣ lim
n→∞

f(xn)
∣∣∣
E
= lim

n→∞
|f(xn)|E = lim

n→∞
|xn|K = lim

n→∞
|xn|L

=
∣∣∣ lim
n→∞

xn

∣∣∣
L

= |x|L
because absolute values are continuous. In particular g is (uniformly) con-
tinuous.

Finally, we show that g is a �eld homomorphism. Since 1 and 0 are already
in K we have g(0) = 0 and g(1) = 1. If x and y are in L, choose sequences
(xn)n∈N and (yn)n∈N in X converging respectively to x and y. Then xn +
yn −−−→

n→∞
x + y and xnyn −−−→

n→∞
xy, so applying the �eld homomorphism

f and passing to the limit we �nd g(x + y) = g(x) + g(y), resp. g(xy) =
g(x)g(y). □

This proposition tells us that the completion of a normed �eld K is �the
smallest� complete normed �eld containing K isometrically. Conversely, if
K is contained isometrically in a complete normed �eld L, then the closure
of K in L will be a completion of K.

Corollary 2.4. A completion of a normed �eld is unique up to a unique
isometric �eld isomorphism.

Proof. Let (E, |·|E , ιE) and (F, |·|F , ιF ) be two completions of K. Then
ιF : K → E extends uniquely to an isometric �eld embedding φ : E → F
because F is complete, and similarly ιE extends uniquely to an isometric
�eld embedding ψ : F → E. Let us show that φ and ψ are inverse to each
other. We have ψ ◦φ ◦ ιE = ψ ◦ ιF = ιE = idE ◦ ιE so ψ ◦φ and idE are two
isometric �eld embeddings E → E extending ιE : K → E. By uniqueness,
we �nd ψ ◦ φ = idE , and the same argument shows that φ ◦ ψ = idF . □

The argument of the corollary always applies to an object de�ned by a
universal property, more generally.

Theorem 2.5. Let (K, |·|K) be a normed �eld. Then (K, |·|K) admits a
completion.

Before doing the proof, we need a lemma:
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Lemma 2.6. Let (Y, d) be a metric space with a dense subspace X. If every
Cauchy sequence in X converges in Y then Y is complete.

Proof. Let (yn)n∈N be a Cauchy sequence in Y . Since X is dense in Y , for
every n ∈ N we can �nd an element xn ∈ X such that d(yn, xn) ≤ 2−n.
Then (xn)n∈N is a Cauchy sequence: for every ε > 0, there exists an N ∈ N
such that both d(yn, ym) ≤ ε and d(xk, yk) ≤ ε for all n,m, k ≥ N , whence
d(xn, xm) ≤ 2ε for all n,m ≥ N . Therefore (xn)n∈N converges in Y to an
element y ∈ Y , and we �nd that (yn) converges also to y: for every ε > 0,
there exists an N ∈ N such that both d(xn, y) ≤ ε and d(xn, yn) ≤ ε for all
n ≥ N , and thus d(yn, y) ≤ 2ε for all n ≥ N . □

Proof of the theorem. Consider the commutative ring C of sequences (xn)n∈N ∈
KN that are Cauchy, with pointwise ring operations. The unit is the con-
stant sequence equal to 1. Let us observe that a Cauchy sequence is bounded:
there exists an N ∈ N such that for all n,m ≥ N , |yn − ym| ≤ 1, and thus
for all n ≥ N , |xn| = |xn − xN + xN | ≤ 1 + |xN | so that for all n ∈ N,
|xn| ≤ max(|x0| , . . . , |xN−1| , |xN |+ 1).

We �rst show that the subset m of sequences that converge to 0 is an ideal.
The sum of two sequences converging to 0 still converges to 0. Let (xn)n∈N
be a sequence converging to 0, and let (yn)n∈N be a Cauchy sequence. Let
C > 0 be a bound for (|yn|)n∈N. Then for every ε > 0, there exists an N ∈ N
such that |xn| ≤ ε/C for all n ≥ N , and thus |xnyn| ≤ ε for all n ≥ N .
Note that two Cauchy sequences (xn)n∈N and (yn)n∈N are equal in C/m if
and only if |xn − yn| −−−→

n→∞
0.

Let us now show that C/m is a �eld. We have to show that every non-zero
element is invertible. Thus, let (xn)n∈N /∈ m. By de�nition, there exists
ε > 0 such that for all k ∈ N, there exists Mk ≥ k with |xMk

| > ε. There
exists also N ∈ N such that for all n,m ≥ N , |xn − xm| ≤ ε/2. Thus for all
n ≥MN , we �nd

|xn| = |xn − xMn + xMn | = |xMn − (xMN
− xn)| ≥

∣∣|xMN
|−|xMN

− xn|
∣∣ > ε/2

so that xn ̸= 0 for all n ≥MN . Put

yn =

{
1 if xn = 0
0 otherwise

Then by the above, (yn)n∈N ∈ m and xn + yn never vanishes. If we de�ne
zn = 1

xn+yn
, we �nd that (xnzn)n∈N is eventually constant equal to 1, which

means that the class of (zn)n∈N is an inverse for the class of (xn)n∈N in C/m.
However, we still have to check that (zn)n∈N is a Cauchy sequence. For
n ≥MN , zn = 1/xn and we �nd for n,m ≥MN :

|zm − zn| =
∣∣∣ 1

xm
− 1

xn

∣∣∣ = ∣∣∣xn − xm
xmxn

∣∣∣ ≤ |xn − xm|
1
4ε

2
−−−−−→
n,m→∞

0.

Let us now de�ne an absolute value on C/m. The triangle equality implies
that |·| is uniformly continuous on K: we have

∣∣|x| − |y|
∣∣ ≤ |x− y|. Thus
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if (xn)n∈N ∈ C, we �nd that (|xn|)n∈N is a Cauchy sequence in R hence
converges, and so we put

|(xn)n∈N| := lim
n→∞

|xn|

If (xn)n∈N ∈ C and (yn)n∈N ∈ m, then |(xn)n∈N + (yn)n∈N| = |(xn)n∈N|, so
this induces a well-de�ned absolute value on C/K. We skip the veri�cation
of the axioms.

The �eld K embeds into C/m by sending x ∈ K to the class modulo m
of the constant sequence (x)n∈N. Let us denote ι : x 7→ (x)n∈N mod m this
embedding. The image of K under ι is dense in C/m: given an element
y ∈ C/m represented by (xn)n∈N and ε > 0, there exists N ∈ N such that for
all n ≥ N , |xn − xN | ≤ ε. Thus we �nd

|y − ι(xN )| = lim
n→∞

|xn − xN | ≤ ε

i.e. the element ι(xN ) is close enough to the element y ∈ C/m.
It remains to show that C/m is complete. For this we apply the above

lemma, whence it su�ces to show that (the image under ι of) a Cauchy
sequence in K converges in C/m. Let us show that a Cauchy sequence
(xn)n∈N in K converges to its class y modulo m in C/m. Let ε > 0; there
exists N ∈ N such that for all n ≥ N , |xn − xm| ≤ ε. But then, for all
n ≥ N :

|ι(xn)− y| = lim
k→∞

|xn − xk| ≤ ε,

so (ι(xn))n∈N converges to y in C/m. □

More generally and also less generally in a sense, any metric space admits
a completion, that is a complete metric space in which it embedds densely
and isometrically. Completions of metric spaces have a similar universal
property as above, and thus are unique up to unique isometry. Therefore, the
completion of a normed �eld is its completion as a metric space, which tells
us that somehow its completion as a metric space inherits a �eld structure
compatible with the absolute value �for free�. It is interesting to work out
how this happens using the universal property of the completion of a metric
space.

De�nition 2.7. We de�ne Qp, the �eld of p-adic numbers, as the completion
of (Q, |·|p).

Remark. Let K be a normed �eld. Then the absolute value on its completion
L is continuous and K is dense in L, so the value group |L|L ⊆ R+ satis�es

|K|K ⊆ |L|L ⊆ |K|K ⊆ R+.

In particular, the value group of |·|p on Q is {0} ∪ {pn, n ∈ Z} so the

value group of the p-adic absolute value on Qp is also {0} ∪ {pn, n ∈ Z}.
Therefore the map vp : Q → Z ∪ {∞} also extends to a map vp : Qp →
Z ∪ {∞} satisfying |x|p = p−vp(x).
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We end this section with a criterion for the convergence of series in a
complete non-archimedean normed �eld.

Proposition 2.8. Let K be an non-archimedean normed �eld. Then a se-
quence (xn)n∈N in K is Cauchy if and only if |xn+1 − xn| −−−→

n→∞
0. In

particular, if K is a complete non-archimedean normed �eld then

(1) a sequence (xn)n∈N converges if and only if |xn+1 − xn| −−−→
n→∞

0;

(2) a series
∑

n≥0 xn converges if and only if xn −−−→
n→∞

0.

Proof. We check that if a sequence (xn)n∈N inK is such that |xn+1 − xn| −−−→
n→∞

0, then it is Cauchy, and leave the remainder of the proof to the reader. Thus,
let ε > 0, and let N ∈ N such that |xn+1 − xn| ≤ ε for all n ≥ N . Then for
n,m ≥ N , without loss of generality we can assume m ≥ n, and then from
the strong triangle inequality we get

|xm − xn| = |xm − xm−1 + (xm−1 − xm−2) + · · ·+ (xn+1 − xn)|
≤ max(|xm − xm−1| , . . . , |xn+1 − xn|)
≤ ε.

□

3. The ring of p-adic integers

Let K be an non-archimedean normed �eld with a non-trivial absolute
value, and denote by OK := B̄(0, 1) = {x ∈ K, |x| ≤ 1} be its unit ball. It
turns out that in the presence of the strong triangle inequality, OK behaves
nicely:

Proposition 3.1. Let K be an non-archimedean normed �eld with a non-
trivial absolute value.

(1) The subset OK is a subring of K.
(2) The ring OK is a local ring with maximal ideal m := B(0, 1) =

{x ∈ K, |x| < 1}, so its set of units is O×
K = {x ∈ K, |x| = 1}.

(3) The ring OK is an integral domain with fraction �eld K.
(4) For any t ∈ m\ {0}, we have K = OK [1/t].

Recall that a local ring is a commutative ring R with a unique maximal
ideal m, or equivalently such that m is an ideal and every element in R\m
is invertible. The subring OK is usually called the valuation ring of K, and
the quotient �eld k := OK/m is called the residue �eld of k.

Proof. We have 0, 1 ∈ OK . For x, y ∈ OK , we �nd |xy| = |x| |y| ≤ 1 so
xy ∈ OK , and

|x+ y| ≤ max(|x| , |y|) ≤ 1

by the strong triangle inequality. This shows that OK is a subring of K.
The same argument shows that m is an ideal in OK .
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Let x ∈ OK\m. Then x is non-zero, so is already invertible in K and it

su�ces to show that x−1 ∈ OK . But
∣∣x−1

∣∣ = |x|−1 = 1−1 = 1, so we are
done.

Finally, OK is an integral domain since it is a subring of a �eld: if xy = 0
and x ̸= 0 then x is invertible in K and thus y = 0. Moreover, since the
absolute value is non-trivial, there exists t ∈ m\ {0}, that is 0 < |t| < 1.
Then for any x ∈ K, there exists n ≥ 0 such that |tnx| = |t|n |x| ≤ 1,
and thus for y = tnx ∈ OK we have x = y

tn , where both numerators and
denominators are in K. This shows that K is the fraction �eld of OK and
equal to OK [1/t]. □

Example 7. Let K = Q with the p-adic absolute value. Then OK = Z(p) =
{a/b ∈ Q, p does not divide b}, the localization of Z at the prime ideal (p),
its maximal ideal is pZ(p) = {a/b ∈ Q, p does not divide b and p divides a}
and its residue �eld is Z/pZ = Fp, the �eld with p elements. Let us show

more generally that there is a canonical isomorphism Z/pnZ ≃−→ Z(p)/p
nZ(p):

there is a natural map Z → Z(p), and the ideal pnZ is sent into pnZ(p) so
all its elements become zero in the quotient Z(p)/p

nZ(p). We thus get a
factorization:

Z Z(p)

Z/pnZ Z(p)/p
nZ(p)

and the bottom map is injective because the kernel of the composite map
Z → Z(p) → Z(p)/p

nZ(p) is p
nZ(p) ∩ Z = pnZ. It thus su�ces to show that

the bottom map is surjective, i.e. that any element x ∈ Z(p) is in the same
class modulo pZ(p) as an element n ∈ Z. Thus let x = a/b ∈ Z(p). Then b is
prime to p so there exists u, v ∈ Z such that ub+ vp = 1. Multiplying by x
in Z(p), we �nd ua + vpx = x so x ∈ ua + pZ(p) is in the same class as the
integer ua. Alternatively, we could have appealed to the more general fact
that localizations and quotients commute.

Observe that in the above, we have shown that for any x ∈ Z(p) and n ≥ 1,

there is an αn ∈ Z with x − αn ∈ pnZ(p), i.e. |x− αn|p ≤ p−n. This shows
that Z is dense in Z(p) for the p-adic topology.

When specializing to K = Qp, we thus de�ne

De�nition 3.2. The valuation ring of Qp,

Zp := B̄(0, 1) = {x ∈ Qp, |x| ≤ 1} ,

is called the ring of p-adic integers.

Taking t = p in the previous proposition, we �nd Qp = Zp[1/p]. We
have further good properties in this case, coming from the fact that the map
vp : Zp\ {0} → Z has image Z, which is discrete.
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Proposition 3.3. The maximal ideal m of Zp is the principal ideal pZp, and
every ideal of Zp is either 0 or of the form pnZp for some n ≥ 0.

Proof. If you know the proof that Z is a principal ideal domain, then this
proof should be similar.

Let x ∈ Qp\ {0} and let n = vp(x). Then y := p−nx satis�es |y|p =

p−(−n)p−n = 1 so y ∈ Z×
p . Thus x is of the form pny for an integer n ∈ Z

and a unit y ∈ Z×
p , and this decomposition is unique: if y, y′ ∈ Z×

p and
n,m ∈ Z satisfy pny = pmy′ in Qp, then applying vp we �nd n = m and thus
y = y′.

Now pZp ⊂ m since |p|p = |p|p < 1. Conversely, if x ∈ m, we have |x|p < 1

so |x|p ≤ 1/p = |p|p so for y = x/p we �nd |y|p ≤ 1 and hence y ∈ Zp and
x = py ∈ pZp.

Similarly, let I be a non-zero ideal in Zp. Let x ∈ I\ {0} and write x = pky

with y ∈ Z×
p . Then |x|p = p−k ≤ 1 so k ≥ 0, and pk = y−1x ∈ I. We now

let n = min
{
k, pk ∈ I

}
, which is well-de�ned by the previous observation.

Then clearly pnZp ⊂ I, and conversely if x ∈ I we write x = pky and �nd

as before pk = y−1x ∈ I, which by the minimality of n implies k ≥ n. But
then x = pn · (pk−ny) ∈ pnZp, which shows the reverse inclusion. □

Proposition 3.4. We have:

(1) Q ∩ Zp = Z(p);
(2) Z is dense in Zp; equivalently, given x ∈ Zp, for all n ≥ 1, there exists

αn ∈ Z such that |x− αn| ≤ p−n, i.e. x − αn ∈ pnZp; equivalently,
the canonical map Z/pnZ → Zp/p

nZp induced from the inclusion
Z → Zp is an isomorphism. In particular the residue �eld of Qp is
the �nite �eld Fp with p elements.

Proof. The �rst assertion follows from the fact that Z(p) is the valuation
ring for the p-adic absolute value on Q. Let x ∈ Zp. Since Q is dense
in Qp, we can �nd for all n ≥ 1 an element βn ∈ Q with |x− βn|p ≤
p−n ≤ 1. In particular by the strong triangle inequality we �nd |βn|p ≤ 1,
so βn ∈ Q ∩ Zp = Z(p). But we already know that Z is dense in Z(p),

so we can �nd αn ∈ Z with |αn − βn|p ≤ p−(n+1), which implies by the

strong triangle inequality |x− αn|≤ p−n, or equivalently x ∈ αn + pnZp.
The previous discussion around Z(p) shows the equivalence of the di�erent
claims. □

Corollary 3.5. There is an isomorphism of rings

Zp
≃−→ limZ/pnZ := {(xn ∈ Z/pnZ)n∈N∗ , xn+1 ≡ xn mod (pn)}

⊆
∏

Z/pnZ.

Remark. We can de�ne a p-adic valuation on limZ/pnZ as vp((xn)) =
max(n, xn = 0), and it coincides with the p-adic valuation on Zp under the
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above isomorphism. It induces a topology on limZ/pnZ which can be identi-
�ed as the subspace topology of limZ/pnZ ⊂

∏
Z/pnZ, where the latter has

the product topology where each term is considered as a discrete topological
space. Since each Z/pnZ is discrete and �nite, it is compact. Tychonov's
theorem states that a product of compact Hausdor� topological spaces, with
the product topology, is compact Hausdor�2. This can be used to show that
Zp is compact, because limZ/pnZ is a closed subset of

∏
Z/pnZ, hence also

compact Hausdor�. This tells us that we could have started with the above
de�nition to de�ne Zp as a topological ring, and then put Qp = Zp[1/p]. We
will not choose this route to show the compactness of Zp, but instead take a
more direct approach.

Proof. Given an element x ∈ Zp, we map it to the family (x mod (pnZp))
which gives an element of limZ/pnZ. We leave to the reader to check that
this is a morphism of rings. Now if x is sent to 0, this means that x ∈ pnZp

for all n ≥ 1, and hence that |x|p ≤ p−n for all n ≥ 1, so x = 0. This

shows the injectivity. If (xn) ∈ limZ/pnZ, choose a lift x̃n ∈ Z of the class
xn ∈ Z/pnZ. Then x̃n+1 − x̃n ≡ xn+1 − xn ≡ xn − xn ≡ 0 mod (pn) so
(x̃n)n∈N is a Cauchy sequence (because |·|p is ultrametric!) hence converges

in Zp to an element x ∈ Zp. But then for any n ≥ 1, taking ε = p−n gives the
existence of N ≥ n such that for all m ≥ N , |x− x̃m|p ≤ p−n. In particular

x ≡ x̃N ≡ xN ≡ xn mod (pn)

so x is the required lift. □

Observe that in the above proof, we could have asked that x̃n ∈ {0, . . . , pn − 1}
in which case x̃n would have been uniquely determined by xn. Thus, because
the above is an isomorphism of ring, any x ∈ Zp is the limit of a unique se-
quence of integers (αn)n∈N∗ with αn ∈ {0, . . . , pn − 1} and |x− αn|p ≤ p−n.

If we now write αn = a
(n)
0 + a

(n)
1 p + · · · + a

(n)
n−1p

n−1 the expansion in base

p with a
(n)
i ∈ {0, . . . , p− 1}, we �nd for n ≥ m that |αn − αm|p ≤ p−n, so

αn ≡ αm mod (pm) which implies a
(n)
0 = a

(m)
0 , . . ., a

(m)
m−1 = a

(n)
m−1. Thus,

put am = a
(n)
m for any n ≥ m. Then the series

∑
n≥0 anp

n converges to
limαn = x, i.e. any element x ∈ Zp has a unique expansion in base p with
potentially in�nitely many digits on the left (contrarily to the decimal ex-
pansion of a rational number where you get in�nitely many digits on the
right). Any element of Qp can be made to land in Zp after multiplying by
a big enough power of p, so similarly elements in Qp have a unique p-adic
expansion x =

∑
n≥−m anp

n for some m ≥ 0.

Proposition 3.6. Let X be a complete metric space. Then X is compact
if and only if it for every ε > 0, X can be covered by �nitely many balls of
radius ≤ ε.

2Tychonov's theorem in its general version is equivalent to the axiom of choice, but in

our case we only need a version for countable products which is weaker.
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The latter condition is called being totally bounded.

Proof. If X is compact, then we can consider the cover X =
⋃

x∈X B(x, ε),
which admits a �nite subcover. Conversely, since X is a metric space it suf-
�ces to show that any sequence has a convergent subsequence, and because
X is complete it su�ces to show that any sequence has a Cauchy subse-
quence. Thus let (xn)n∈N be a sequence in X. Construct inductively strictly
increasing functions φk : N → N such that for all n ∈ N, xφ0◦···◦φk(n) is in a

single ball of radius 2−k; this is done by observing that if φ0 to φk−1 have al-
ready been constructed, we can cover X by �nitely many balls of radius 2−k,
and thus the sequence (xφ0◦···◦φk−1(n))n∈N must have in�nitely many terms
in one of them, and we can choose a strictly increasing function φk : N → N
such that (xφ0◦···◦φk(n))n∈N is the subsequence picking those elements.

We now use a diagonal argument to extract a single subsequence: consider
the strictly increasing function

φ(n) := φ0 ◦ · · · ◦ φn(n).

Then by construction, for all n ≥ k, the terms xφ(n) are in a single ball of

radius 2−k, because for those n we have

φ(n) = φ0 ◦ · · · ◦ φk(φk+1 ◦ · · · ◦ φn(n)) = φ0 ◦ · · · ◦ φk(something).

Put in other terms, for all n,m ≥ k the terms xφ(n), xφ(m)) are in a ball

B(y, 2−k) and thus

d(xφ(n), xφ(m))) ≤ d(xφ(n), y) + d(y, xφ(m)) ≤ 2 · 2−k

which shows that (xφ(n))n∈N is the sought-after Cauchy subsequence. □

Remark. More generally, a metric space is compact if and only if it is com-
plete and totally bounded.

Corollary 3.7. Zp is compact for its natural topology, Qp is locally compact.

Proof. Since Zp is the closed unit ball in the complete space Qp, Zp is a
complete space. Hence it su�ces to show that for any n ≥ 1, Zp is covered
by �nitely many balls of radius p−n. Observe now that any ball B(x, p−n)
of radius p−n and center x ∈ Zp is exactly the coset x + pnZp. Since Zp is
the disjoint union of its cosets modulo pnZp, we have to show equivalently
that there are �nitely many cosets, which we already proved since the set of
cosets is the �nite quotient ring Zp/p

nZp ≃ Z/pnZ. Finally, any closed ball
in Qp is of the form x + pnZp for some x ∈ Qp and n ∈ Z, so is compact
because dilation and translation are continuous thus preserve compacts. □

Remark. The above proof shows more generally that if K is a complete
non-archimedean normed �eld with a non-trivial discrete valuation, then the
following are equivalent:

(1) K is locally compact;
(2) the valuation ring OK is compact;
(3) the residue �eld OK/m is �nite
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Indeed the argument above shows (2) ⇔ (3) and (2) =⇒ (1), and if K is
locally compact, then there is a neighbourhood of 0 that is compact; since it
is a neighbourhood of 0, it must contain an open ball around 0 of non-zero
radius, so also a closed ball of smaller radius r > 0, and that closed ball
must be compact as a closed subset of a compact Hausdor� space. We can
always choose r > 0 small enough such that r = |y| for some y ∈ OK , but
then B(0, r) = yOK is homeomorphic to OK so the latter is also compact.
This shows (1) =⇒ (2).

Remark. It can be shown, using the previous remark among other things,
that the following list is up to isometric isomorphism the complete list of
complete locally compact normed �eld with a non-trivial absolute value:

• the �eld of Laurent series Fq((T )) over a �nite �eld Fq with q el-
ements, with the T -adic valuation; this is the fraction �eld of the
ring of formal power series, and the completion of the �eld Fq(T )
of rational fractions for the absolute value induced by the T -adic
valuation;

• R and C with the usual absolute value |·|∞;
• Qp and its �nite extensions (we will see later that on those, there
exists a unique absolute value extending that on Qp).

4. Aside: route through Tychonov's theorem

Warning, notations are horrible.

Theorem 4.1 (Tychonov's theorem, very weak version). A countable prod-
uct of �nite discrete spaces is compact and Hausdor�.

Recall that open sets for the product topology are generated by subsets of
the form

∏
i∈I Ωi×

∏
i/∈I Xi where I is a �nite set of indices and Ωi is open in

Xi. Here, this means that Ωi is any subset of Xi; thus we can further restrict
to Ωi being a singleton without changing the generated topology, because
any subset of Xi is a union of its elements.

Before doing the proof, we need the following lemma:

Lemma 4.2. Let (Xi)i∈N be a countable family of �nite discrete spaces.
Then the function

d :

{ ∏
Xi ×

∏
Xi −→ R+

(x(i)), (y(i)) 7→
∑

i≥0
1
2i
d(xi, yi)

is a metric on
∏
Xi inducing the product topology. In particular, the product

topology on
∏
Xi is metrizable and Hausdor�.

Proof. We leave the veri�cation that it is a metric to the reader. Since∑
i≥n

1
2i

= 2−n+1, we have that

d((x(i)), (y(i))) ≤ 2−n+1 whenever x(i) = y(i) for all i < n.

We have observed that the generating opens for the product topology are of
the form

{
x(0)

}
× · · · ×

{
x(n−1)

}
×
∏

i≥nXi; choosing furthermore elements
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x(i) ∈ Xi for i ≥ n, we �nd that such a generating open is included in the
open ball B((xi), 2−n+1).

Conversely, if (x(i)) ∈
∏
Xi and r > 0, for an element (y(i)) ∈ B((x(i)), r),

taking r′ = r−d((x(i)),(y(i)))
2 we �nd that the open ball around (y(i)) of radius

r′ < r is completely included in B((x(i)), r). There exists an integer n ≥ 1

such that 2−n+1 < r′, which then shows that the generating open
{
y(0)
}
×

· · · ×
{
y(n−1)

}
×
∏

i≥nXi contains (y
(i)) and is included in B((y(i)), r′) and

thus also in B((x(i)), r). □

Proof of the theorem. Since the topology is induced by a metric, the space
is Hausdor�, and is compact if it is sequentially compact.

Let (xn)n∈N = ((x
(i)
n )) be a sequence in

∏
Xi. We will use a diagonal

argument to extract a converging subsequence. Observe that since X0 is
�nite, there must be in�nitely many terms xn ∈

∏
Xi that share the same

value x
(0)
n ∈ X0. Thus we �nd a strictly increasing function φ0 : N → N such

that (x
(0)
φ0(n)

)v is constant. We now proceed by induction. Assume we have

constructed strictly increasing functions φ0, . . . , φn−1 : N → N such that

(x
(k)
ϕ0◦···◦ϕk(n)

) is constant for all 0 ≤ k ≤ n − 1. Then (x
(n)
φ0◦···◦φn−1(n)

) can

take only �nitely many values since Xn is �nite, thus we can �nd a strictly

increasing function φn : N → N such that (x
(n)
φ0◦◦···◦φn(n)

) is constant.

Now, put
φ(n) := φ0 ◦ · · · ◦ φn(n)

Then the subsequence (xφ(n)) is by construction such that its k-th component

(x
(k)
φ(n)) is constant for n ≥ k, because for such an n we have

φ(n) = φ0 ◦ · · · ◦ φk(φk+1 ◦ · · · ◦ φn(n)) = φ0 ◦ · · · ◦ φk(something).

Let y(k) ∈ Xk denote the common constant value of (x
(k)
φ(n)) is for n ≥ k.

Then since y(k) = x
(k)
φ(n) for all k ≥ n, we have

d((y(k)), xφ(n)) ≤ 2−n

(as we observed in the previous proof) and so (xφ(n)) converges to (y(k)) ∈∏
Xi. □

Before showing that limZ/pnZ is compact, we need a reminder on Haus-
dor� topological spaces.

Proposition 4.3. Let X be a topological space and let ∆X ⊂ X ×X denote
the diagonal {(x, x) ∈ X ×X} in X × X. Endow X × X with the product
topology. Then X is Hausdor� if and only if ∆X is closed in X.

Proof. If X is Hausdor�, for a point (x, y) ∈ (X×X)\∆X we have x ̸= y, so
there exists open U, V containing respectively x, y such that U∩V = ∅. Thus
we �nd that U×V is an open ofX×X containing (x, y) but (U×V )∩∆X = ∅,
since any point (x, x) in that intersection would have x ∈ U and x ∈ V .



16 ADRIEN MORIN

Conversely, if ∆X is closed then for any x ̸= y in X, (x, y) /∈ ∆X so we
can �nd a generating open U × V ⊂ (X × X)\∆X with (x, y) ∈ U × V .
Unwrapping the de�nitions we �nd that x ∈ U, y ∈ V and U ∩ V = ∅. □

Proposition 4.4. Let X be a topological space and let Y be a Hausdor�
topological space with two continuous maps f, g : X → Y . Then the subset
S = {x ∈ X, f(x) = g(x)} is closed in X.

Proof. Consider the map (f, g) : X → Y ×Y . Then (f, g) is continuous since
(f, g)−1(U × V ) = f−1(U) ∩ g−1(V ) is open in X for any two opens U, V of
Y . Therefore the set

S = (f, g)−1(∆Y )

is closed in X. □

Corollary 4.5. The ring limZ/pnZ is compact for the subspace topology.

Proof. We have to show that limZ/pnZ is closed in
∏

Z/pnZ. Consider the
map

shift :

{ ∏
Z/pnZ −→

∏
Z/pnZ

(xn)n∈N 7→ (xn+1 mod (pn))n∈N.

This is continuous, since its composition with the projection
∏

n Z/pnZ →
Z/pkZ identi�es with the composition

∏
n Z/pnZ → Z/pk+1Z → Z/pkZ

where the �rst map is a projection hence continuous and the second map is
a map of discrete spaces. Observe now that we have

limZ/pnZ =

{
(xn)n∈N ∈

∏
n

Z/pnZ, shift((xn)n∈N) = (xn)n∈N

}
.

We are done by the previous proposition. □

Proposition 4.6. The restriction of the p-adic valuation to Zp induces a
p-adic valuation vp on limZ/pnZ via the isomorphism Zp ≃ limZ/pnZ, com-

puted as vp((xn)n∈N) = max(k ∈ N, xk = 0).3 Similarly, we get an induced

metric on limZ/pnZ given by d((xn)n∈N, (yn)n∈N) = p−vp((xn−yn))n∈N. The
topology induced by that metric is the subspace topology of the product topol-
ogy on

∏
Z/pnZ. In other words, the isomorphism of rings

Zp
≃−→ limZ/pnZ

is a homeomorphism, for the topology induced by the p-adic absolute value on
Qp on the left, and the subspace topology of the product topology on

∏
Z/pnZ

on the right. In particular, Zp is compact.

Proof. We leave the proof of the �rst claim to the reader. Recall that the
product topology is induced by

dprod((xn), (yn)) =
∑
n≥1

2−ndtriv(xn, yn)

3with the convention x0 = 0.
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Since the trivial distance dtriv is induced by the trivial absolute value |·|triv
on Z/pnZ (this notion of absolute value also makes sense for a commutative
ring !), we can de�ne a �weak absolute value� (not necessarily multiplicative
but still satisfying the triangle inequality, and sending −1 to 1) |·|prod on∏

Z/pnZ by

|(xn)n∈N|prod =
∑
n≥1

2−n |xn|triv

Since we have

dprod((xn), (yn)) =
∑
n≥1

2−n |xn − yn|triv = |(xn)− (yn)|prod ,

this weak absolute value induces our metric hence the product topology.
Hence we are reduced to showing that open balls around 0 for the restriction
of |·|prod to limZ/pn and for |·|p are interlocked.

Observe that for (xn)n∈N ∈ limZ/pn, if xn = 0 then xk = 0 for all k ≤ n.
The �rst index n such that xn ̸= 0 is by de�nition vp((xn)) + 1. Hence we
�nd

|(xn)|prod =

vp((xn))∑
i=1

2−i · 0 +
∑

i>vp((xn))

2−i · 1 = 2−vp((xn))

It is now clear that |(xn)|prod = |(xn)|ln(2)/ ln(p)p , which shows that |·|prod is

an absolute value on limZ/pn equivalent to |·|p, so we are done. □

5. Hensel's lemma

In real analysis, we have Newton's method to try and �nd a zero of some
C1-function f : I → R. We start at a point x0 ∈ I such that the slope of f
at x0 is non-zero, i.e. f ′(x0) ̸= 0. We then go down the a�ne line of that
slope from the point of coordinate (x0, f(x0)) to a new point (x1, 0). Then
we can try to iterate the process, and sometimes it will converge to a zero of
f . The a�ne line passing through (x0, f(x0)) of slope f

′(x0) has equation
y = f ′(x0)(x− x0) + f(x0). Thus its intersection with the line y = 0 gives

x1 = x0 −
f(x0)

f ′(x0)

However, in some cases it does not converge: see for instance �g. I.2 p. 18
in Koblitz's book. In a complete non-archimedean normed �eld however, it
will converge:

Theorem 5.1 (Hensel's lemma). Let K be a complete non-archimedean
normed �eld, valuation ring OK and maximal ideal m. Let P ∈ OK [X]
and suppose that there exists an element α0 ∈ OK with

|P (α0)| <
∣∣P ′(α0)

∣∣2 .
Then, in the open ball B(α0, |P ′(α0)|), there exists a unique α ∈ OK such
that P (α) = 0. Moreover:
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(1) Newton's method for P starting from α0 converges to α with an ex-
ponentially decreasing error term;

(2) |α− α0| = |P (α0)/P
′(α0)|;

(3) |P ′(α)| = |P ′(α0)|.

Proof. Note that |P ′(α0)|2 > |P (α0)| ≥ 0 so P ′(α0) ̸= 0. Let us start by
observing what happens when doing one iteration of Newton's method; thus,
put

α1 = α0 − P (α0)/P
′(α0).

Since α0 ∈ OK , we have P
′(α0) ∈ OK , and the hypothesis then gives∣∣∣∣ P (α0)

P ′(α0)

∣∣∣∣ < ∣∣P ′(α0)
∣∣ ≤ 1

so that P (α0)/P
′(α0) ∈ OK and thus α1 ∈ OK . We will need a polynomial

identity:

P (X + Y ) = P (X) + P ′(X)Y +Q(X,Y )Y 2,

for some polynomial Q ∈ OK [X,Y ]. To prove it, take the binomial expansion
of (X + Y )k and collect only the �rst two terms Xk and kXk−1Y , giving

P (X + Y ) =
∑

ak(X + Y )k =
∑

ak(X
k + kXk−1Y + Y 2(· · · ))

= (
∑

akX
k) + (

∑
kakX

k−1)Y + Y 2(· · · )

= P (X) + P ′(X)Y + Y 2(· · · ).

Put t =
∣∣P (α0)/P

′(α0)
2
∣∣ < 1. We apply our polynomial identity to α1:

P (α1) = P (α0 −
P (α0)

P ′(α0)
)

= P (α0)− P ′(α0) ·
P (α0)

P ′(α0)
+Q

(
α0,−

P (α0)

P ′(α0)

)
·
(
− P (α0)

P ′(α0)

)2
hence

P (α1) = Q
(
α0,−

P (α0)

P ′(α0)

)
·
( P (α0)

P ′(α0)

)2
Taking absolute values, we �nd

(5.1) |P (α1)| =
∣∣∣∣Q(α0,

P (α0)

P ′(α0)

)∣∣∣∣ ∣∣∣∣( P (α0)

P ′(α0)

)2∣∣∣∣ ≤ ∣∣∣∣ P (α0)

P ′(α0)

∣∣∣∣2 = ∣∣P ′(α0)
∣∣2 · t2.

By de�nition, |α1 − α0| =
∣∣∣ P (α0)
P ′(α0)

∣∣∣ = |P ′(α0)| · t. Moreover, applying our

polynomial identity to P ′, we �nd in particular

P ′(X + Y ) = P ′(X) + Y R(X,Y )

for some polynomial R(X,Y ) ∈ OK [X,Y ]. Again, we apply this to α1 and
�nd

P ′(α1) = P ′(α0)−
P (α0)

P ′(α0)
·R
(
α0,−

P (α0)

P ′(α0)

)
.
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We have ∣∣∣∣ P (α0)

P ′(α0)
·R
(
α0,−

P (α0)

P ′(α0)

)∣∣∣∣ ≤ ∣∣∣∣ P (α0)

P ′(α0)

∣∣∣∣
<
∣∣P ′(α0)

∣∣
by the hypothesis, and thus by the equality case of the ultrametric inequality:∣∣P ′(α1)

∣∣ = ∣∣P ′(α0)
∣∣ ;

in particular P ′(α1) ̸= 0. To be able to iterate further with α1, we look at
the new ratio P (α1)/P

′(α1)
2 and use (5.1):

(5.2)

∣∣∣∣ P (α1)

P ′(α1)2

∣∣∣∣ = |P (α1)|
|P ′(α0)|2

≤ t2.

The above analysis shows, by induction, that the sequence from Newton's
method

αn+1 = αn − P (αn)

P ′(αn)
.

is well-de�ned, has terms αn ∈ OK , and satis�es

(5.3)
∣∣P ′(αn)

∣∣ = ∣∣P ′(α0)
∣∣

for all n ∈ N. We will show moreover by induction that

(5.4) |P (αn)| ≤
∣∣P ′(α0)

∣∣2 · t2n .
This is equivalent to showing that

|P (αn)|
|P ′(αn)|2

≤ t2
n
.

But the analysis above, combined with the induction hypothesis, shows

|P (αn+1)|
|P ′(αn+1)|2

≤
( |P (αn)|
|P ′(αn)|2

)2≤ (t2
n
)2 = t2

n+1

and we are done. Finally, we get

|αn+1 − αn| =
∣∣∣∣ P (αn)

P ′(αn)

∣∣∣∣ = |P (αn)|
|P ′(α0)|

≤
∣∣P ′(α0)

∣∣ · t2n
so the sequence (αn)n∈N is a Cauchy sequence in OK and thus converges to
some α ∈ OK . First, by continuity, taking the limit in eqs. (5.3) and (5.4)
we get

P (α) = 0,
∣∣P ′(α)

∣∣ = ∣∣P ′(α0)
∣∣ .

This shows that α is a root of P and claim (3).
Moreover, by the strong triangle inequality we have for all m ≥ n:

|αm − αn| ≤
∣∣P ′(α0)

∣∣ · t2n
and thus by continuity of the absolute value

|α− αn| ≤
∣∣P ′(α0)

∣∣ · t2n ,
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which shows claim (1) about the rate of convergence. Additionally, for n > 0
we have

|α1 − α0| =
∣∣∣∣ P (α0)

P ′(α0)

∣∣∣∣
|αn+1 − αn| ≤

∣∣P ′(α0)
∣∣ · t2n < ∣∣P ′(α0)

∣∣ · t = ∣∣∣∣ P (α0)

P ′(α0)

∣∣∣∣ .
Therefore the equality case of the strong triangle inequality gives

|αn − α0| =
∣∣∣∣ P (α0)

P ′(α0)

∣∣∣∣
and we get claim (2) by continuity.

It remains to show the uniqueness of a solution α to P (α) = 0 satisfying
|α− α0| < |P ′(α0)|. Suppose β ∈ OK is another solution. Then

|β − α| ≤ max(|β − α0| , |α− α0|) <
∣∣P ′(α0)

∣∣ .
Write β = α + h with |h| < |P ′(α0)|. Using our above polynomial identity,
we �nd

0 = P (β) = P (α) + hP ′(α) + h2Q(α, h) = hP ′(α) + h2Q(α, h).

Thus if h ̸= 0 we �nd P ′(α) = −hQ(α, h) and thus∣∣P ′(α)
∣∣ ≤ |h| <

∣∣P ′(α0)
∣∣ ,

contrarily to what we proved. In conclusion, h = 0 and β = α. □

Remark. Newton's method has a multivariate version, using the di�erential
of a C1 function f : Rn → Rn to �gure out which direction to go to in order
to �nd a zero (i.e. an element sent to (0, . . . , 0)). Similarly, there is a version
of Hensel's lemma for d polynomials in d variables; google4 Keith Conrad's
note A multivariate Hensel lemma to �nd out more.

Corollary 5.2 (Hensel's lemma, simple root version). In the above setting,
suppose that P (α0) ≡ 0 mod m and P ′(α0) ̸≡ 0 mod m, then the same con-
clusions hold, and in particular the root α is the unique root of P satisfying
α ≡ α0 mod m.

Proof. The hypothesis says that |P (α0)| < 1 and |P ′(α0)| = 1, hence

|P (α0)| <
∣∣P ′(α0)

∣∣2 .
□

In other words, if the reduction of P mod m has a simple root in the residue
�eld k = OK/m, then we can lift it to a root of P in OK ; moreover, this
is done by choosing an arbitrary lift of the root of the reduction of P , then
applying Newton's method to it, which converges very fast: for instance,
working with Zp, knowing the root modulo p means knowing its 0-th digit

4Or go to https://kconrad.math.uconn.edu/blurbs/gradnumthy/multivarhensel.

pdf

https://kconrad.math.uconn.edu/blurbs/gradnumthy/multivarhensel.pdf
https://kconrad.math.uconn.edu/blurbs/gradnumthy/multivarhensel.pdf
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in base p, and Newton's method will double the number of correct digits at
each step.

Remark. In the case where the valuation is discrete, the above corollary can
also be proven directly by �nding successive lifts modulo πn, where π is an
element of minimum non-zero valuation. See e.g. Gouvêa's book.

Here are some examples:

Example 8. 2 has a unique cubic root in Z5: indeed, we need to �nd a root
of the polynomial f(X) = X3−2 ∈ Z5[X]. Reducing modulo 5, we �nd that

f(3) ≡ 32 · 3− 2 ≡ 9 · 3− 2 ≡ 4 · 3− 2 ≡ 12− 2 ≡ 2− 2 ≡ 0 mod (5)

and f ′(X) = 3X2 so f ′(3) = 27 ̸≡ 0 mod (5). Hensel's lemma concludes
that there exists a unique α ∈ Z5 with α3 = 2 and α ≡ 3 mod (5).
Moreover, we can compute f(0) ≡ 3 mod (5), f(1) ≡ 4 mod (5), f(4) ≡
16 · 4 − 2 ≡ 4 − 2 ≡ 2 mod (5) so f has no other root in Z5/(5), thus also
necessarily no other root in Z5.

Example 9. 5 has no cubic roots in Z3. If it did, we would have a solution
to X3 ≡ 5 mod (9). But we can compute the cubes modulo 9:

x mod (9) 0 1 2 3 4 5 6 7 8
x3 mod (9) 0 1 8 0 1 8 0 1 8

hence 5 is not a cube modulo 9.

Example 10. 10 has a cubic root in Z3. Since 10 ≡ 1 ≡ 13 mod (3), we
have the factorization X3 − 10 ≡ (X − 1)3 mod (3). But then 1 is not a
simple root of P (X) = X3 − 10 modulo 3 so we cannot apply the corollary
directly and we need the stronger version. Modulo 9, referring to the table
from the previous example we �nd that 1, 4 and 7 are cubic roots of 10 ≡ 1
mod (9). We then compute

P (1) = −9 = −32,

P ′(1) = 3,

P (4) = 54 = 2 · 33,
P ′(4) = 42 · 3,

P (7) = 333 = 37 · 32,
P ′(7) = 72 · 3

so

v3(P (1)) = 2 = 2v3(P
′(1)),

v3(P (4)) = 3 > 2 = 2v3(P
′(4)),

v3(P (7)) = 2 = v3(P
′(7))
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i.e.

|P (1)|3 =
∣∣P ′(1)

∣∣2
3

|P (4)|3 <
∣∣P ′(4)

∣∣2
3

|P (7)|3 =
∣∣P ′(7)

∣∣2
3

We obtain from Hensel's lemma that there is a unique root α ∈ Z3 with
|α− 4|3 < |P ′(4)|3 = 3−1, hence equivalently with |α− 4|3 ≤ 3−2 or α ≡ 4
mod (9).

On the other hand, modulo 27 we �nd that none of the lifts (1 mod (27)),
(10 mod (27)), (19 mod (27)) of (1 mod (9)) are roots of X3−10: we can5

compute

73 − 10 ≡ 18 mod (27)

163 − 10 ≡ 18 mod (27)

253 − 10 ≡ 18 mod (27)

so 1 cannot be close to a root in Z3: if β ∈ Z3 is a root of X3 − 10 and
β ≡ 1 mod (9), then (β mod (27)) is a lift of (1 mod (9)) that is a root of
X3 − 10, a contradiction. Hence necessarily β ̸≡ 1 mod (9) or equivalently
|β − 1|3 ≥ 1/9.

We can argue similarly for 7, �nding that no lift of (7 mod (9)) can be a
root. Thus a cube root of 10 in Z3 has to be a lift of (4 mod (9)) and by
the uniqueness, it is α.

Exercise 1. Let u ∈ Qp\ {0} and write u = pkv, k ∈ Z, v ∈ Z×
p . Show that

u is a square if and only if

(1) for p odd, k is even and v is a square modulo p;
(2) for p = 2, k is even and v ≡ 1 mod (8).

Proposition 5.3. The roots of unity in Qp are

(1) For p odd, the (p− 1)-th roots of unity;
(2) for p = 2, {±1}.

Proof. By Fermat's little theorem, the polynomial Xp−1−1 has p−1 distinct
roots modulo p, namely the elements of F×

p . All those roots modulo p are
thus simple, and lift by Hensel's lemma to at least p − 1 distinct roots of
Xp−1 − 1 in Zp. Since conversely Xp−1 − 1 has at most p − 1 roots, this
shows that Qp has all (p− 1)-th roots of unity, and each one is the lift of a
unique root mod p.

If ζ1 and ζ2 are two roots of unity of order prime to p, let m be the lcm
of their order. Suppose that ζ1 ≡ ζ2 mod (p). The polynomial P (X) :=
Xm − 1 has only simple roots modulo p: it is coprime to its derivative
P ′(X) = mXm−1, which is non-zero because m ̸≡ 0 mod (p). We thus �nd
by the uniqueness in Hensel's lemma that ζ1 = ζ2.

5Here, a calculator start being helpful...
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Now, let ζ be a root of unity of order prime to p. We have ζ ̸≡ 0 mod (p)
so by the previous discussion, ζ is equal to one of the p− 1-th roots of unity,
because those all have order prime to p and their classes modulo p cover all
of the non-zero elements of Z/pZ.

We now look at roots of unity of order a power of p. We start with the
case where p is odd. If ζp = 1 and ζ ̸= 1, using Fermat's little theorem we
�nd

1 ≡ ζp ≡ ζ mod (p).

Thus, write ζ = 1 + px for some x ∈ Zp. By the binomial theorem, we �nd

ζk ≡ 1 + kpx mod (p2) for all k ≥ 0. All roots of Xp − 1 in Zp must be
simple, and ζ ̸= 1 so ζ is a root of

Xp − 1

X − 1
= 1 +X + · · ·+Xp−1.

Therefore,

0 ≡ 1 + ζ + · · ·+ ζp−1 ≡
p−1∑
k=0

(1 + pky) ≡ p+ py
p(p− 1)

2
mod (p2)

and since p is odd, (p− 1)/2 is an integer so we �nally get 0 ≡ p mod (p2),
a contradiction. We have shown that the only p-th root of unity in Qp is

1. Now if ζ was a root of unity of order pk in Qp, then we would �nd that

ζp
k−1

is of order p, a contradiction. So there are no roots of unity of p-power
order.

If p = 2, let us show that the only 4th roots of unity are ±1. This will, as
above, imply that there are no roots of unity of order a power of 2 greater
or equal to 4. Let ζ ∈ Z×

2 be a 4-th root of unity and suppose ζ ̸= ±1.
Then ζ2 = −1. But since ζ ∈ Z×

2 , it cannot be 0 modulo 2 hence ζ ≡ 1 or 3
mod (4). But then −1 = ζ2 ≡ 1 mod (4), a contradiction.

Finally, if ζ is a root of unity in Qp of order n = pk ·m with m prime to

p, we can �nd u, v ∈ Z such that 1 = upk + vm. Then

ζ = (ζp
k
)u · (ζm)v

where (ζp
k
)u is of order dividing m so is a (p − 1)-th root of unity, while

(ζm)v is of p-power order. Combining this observation with the previous
discussion �nishes the proof. □

6. Equivalence of norms on finite extensions of a complete

normed field

De�nition 6.1. Let K be a normed �eld and let V be a K-vector space. A
norm on V is a map ∥·∥ : V → R+ satisfying

(1) ∥x∥ = 0 if and only if x = 0,
(2) for all α ∈ K and x ∈ V , ∥α · x∥ = |α| ∥x∥,
(3) for all x, y ∈ V , ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

A normed K-vector space is a K-vector space equipped with a norm.



24 ADRIEN MORIN

A norm ∥·∥ on a K-vector space V de�nes a metric on V , and hence a
topology, by letting d(x, y) = ∥x− y∥.

Example 11. Let K be a normed �eld. We have the usual ℓp norms ∥·∥p
on Kn for all p ≥ 1, given by

∥(x1, . . . , xn)∥p =

(
n∑

i=1

|xi|p
)1/p

.

Example 12. In the same setting, we have the usual sup norm

∥(x1, . . . , xn)∥∞ = max(|x1| , . . . , |xn|).

If K is a complete normed �eld, then Kn with the sup norm is also com-
plete as a metric space, since for the sup norm being a Cauchy sequence or
converging to an element can be checked on each component.

De�nition 6.2. Let K be a normed �eld, V a K-vector space, and let ∥·∥1
and ∥·∥2 be two norms on V . We say that ∥·∥1 and ∥·∥2 are equivalent if ∥·∥1
and ∥·∥2 induce the same topology on V .

Proposition 6.3. Let K be a normed �eld with a non-trivial absolute value,
V a K-vector space, and let ∥·∥1 and ∥·∥2 be two norms on V . Then ∥·∥1
and ∥·∥2 are equivalent if and only if there exists constants C > 0, D > 0
such that ∥x∥1 ≤ C∥x∥2 and ∥x∥2 ≤ D∥x∥1 for all x ∈ V . If K is equipped
with the trivial absolute value, then the reverse implication still holds.

Proof. We �rst show the reverse implication. Let U be an open of V for ∥·∥1;
we want to show that U is open for ∥·∥2. Thus let x ∈ U ; by de�nition, there
is an open ball B∥·∥1(x, r) ⊂ U of nonzero radius r. But then for all y ∈ V ,

∥y−x∥2 < 1
C r implies ∥y−x∥1 < r, hence B∥·∥2(x,

1
C r) ⊂ B∥·∥1(x, r) ⊂ U is

an open ball for ∥·∥2 around x contained in U , showing that U is open for
∥·∥2. The argument is symmetric so we are done.

Conversely, assume that the absolute value is non-trivial and that ∥·∥1
is equivalent to ∥·∥2. The open ball B∥·∥1(0, 1) is open for ∥·∥1, hence it
is also open for ∥·∥2 by hypothesis, so it must contain a small open ball
B∥·∥2(0, r) for ∥·∥2 of non-zero radius r around its point 0. Now pick γ ∈ K

with |γ| > 1. Then |γ|n −−−→
n→∞

∞ and |γ|n −−−−−→
n→−∞

0, so for every non-

negative real number α, we can �nd an (unique) integer n ∈ Z such that

|γ|n ≤ α < |γ|n+1: namely, this equation is equivalent to

n ln(|γ|) ≤ ln(α) < (n+ 1) ln(|γ|) ⇔ n ≤ ln(α)

ln(|γ|)
< n+ 1 ⇔ n = ⌊ ln(α)

ln(|γ|)
⌋.

Now, let v ∈ V and �nd n ∈ Z such that

|γ|n ≤ ∥v∥2
r

< |γ|n+1
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Then ∥ v
γn+1 ∥2 < r so ∥ v

γn+1 ∥1 < 1. This implies that

∥v∥1 < |γ|n+1 = |γ| |γ|n ≤ |γ|
r
∥v∥2

and we obtain the constant C = |γ|
r . The argument is again symmetric,

which concludes the proof. □

Theorem 6.4. Let K be a complete normed �eld and V a �nite dimensional
K-vector space. Any two norms on V are equivalent, and V is complete for
any norm.

Proof. We will show the result by induction on the dimension of V . If
dimV = 0, then V = {0} is complete and any two norms on V are equal.
Suppose now that the theorem is true for any K-vector space of dimension
≤ d, and let V be a K-vector space of dimension d+1 with a norm ∥·∥. Fix
a basis (e1, . . . , ed+1) of V ; we will show that ∥·∥ is equivalent to the sup
norm ∥·∥∞ coming from that choice of basis. In particular, since V is always
complete for the sup norm, V will also be complete for ∥·∥.

Let x ∈ V . Writing x =
∑d+1

i=1 aiei we �nd the triangle inequality:

∥x∥ = ∥
dn+1∑
i=1

aiei∥ ≤
d+1∑
i=1

|ai|K ∥ei∥ ≤ (

d+1∑
i=1

∥ei∥) ·max |ai|K = C · ∥x∥∞

for C =
∑d+1

i=1 ∥ei∥ > 0 a constant not depending on x. Notice that here we
did not use the induction hypothesis.

Let us show conversely that there exists D > 0 with ∥x∥∞ ≤ D∥x∥ for
all x ∈ V . Let us assume for the sake of contradiction that such a D does
not exist. Thus, for all D = n > 0, n ∈ N, there exists an xn ∈ V with
∥xn∥∞ > n∥xn∥. For every n ∈ N one of the coordinates of xn in the
basis e has maximal absolute value ; call that coordinate αn ∈ K. Then by
construction ∥xn∥∞ = |αn| and thus after renormalizing yn := xn

αn
we �nd

that yn has one of its coordinates equal to 1 and ∥yn∥∞ = 1. Moreover, we
had ∥xn∥∞ > n∥xn∥ so we deduce ∥yn∥ < 1/n∥yn∥∞ = 1/n, so the sequence
(yn)n∈N converges to 0 for ∥·∥.

Consider the hyperplanes Hi = Vect(e1, . . . , êi, . . . , ed+1) generated by a
choice of d basis vectors. Then each Hi is of dimension d, hence they are
complete for ∥·∥ by the induction hypothesis. In particular they are closed for
∥·∥: if (xn)n∈N is a sequence in Hi converging to x ∈ V for ∥·∥, then (xn)n∈N
is a Cauchy sequence in Hi, so it converges in Hi, which implies x ∈ Hi.
Therefore, the �nite union T =

⋃n+1
i=1 ei +Hi is closed, so its complement is

open for ∥·∥. But T consists exactly of those vectors which in the basis (ei)
have at least one coordinate that is exactly one, so (yn)n∈N is a sequence in
T . We now reach the contradiction: on the one hand we have 0 /∈ T , while
on the other hand T is closed for ∥·∥ and yn −−−→

n→∞
0 for ∥·∥ which implies

that 0 ∈ T . □
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Corollary 6.5. Let K be a complete normed �eld and V be a normed vector
space over K. Any �nite-dimensional subspace of V is closed.

Proof. We've actually seen the proof in the previous proof: let W ⊆ V
be �nite-dimensional. Then W is complete for ∥·∥. Therefore, any sequence
(xn)n∈N ∈WN converging to x ∈ V is a Cauchy sequence inW so it converges
in W , and by uniqueness of limits we get x ∈ W . We are done by the
sequential criterion for closedness. □

Corollary 6.6. Let K be a complete normed �eld and let L be an algebraic
extension of K. There exists at most one absolute value on L extending that
on K.

We will see later that there always exists an absolute value on L extending
that on K.

Proof. Since L is an union of �nite extensions of K, we can assume that
L is a �nite extension of K. Let |·|1 and |·|2 be two absolute values on
L, extending |·|K . Observe that those two absolute values are norms when
considering L as a K-vector space, where K acts by multiplication. Thus
|·|1 and |·|2 are equivalent as norms, so they induce the same topology, so
they are equivalent as absolute values, and we �nd that there exists α > 0
with |·|1 = |·|α2 .

We now distinguish two cases: if |·|K is non-trivial, there is an x ∈ K
with |x| ≠ 0, 1 and applying the previous equation to x we �nd |x|K = |x|αK ,
which implies α = 1.

If now the absolute value on K is trivial, then the trivial absolute value
on L extends the absolute value on K, so by the above argument there exists
α > 0 such that |·|1 = |·|αtriv. But since the trivial absolute value only takes
values in {0, 1}, any power of the trivial absolute value is equal to it. □

Notice that if K is a normed �eld with the trivial absolute value, then it is
complete: if (xn)n∈N is a Cauchy sequence, then there exists N ∈ N such that
for all n,m ≥ N , |xn − xn|triv < 1; but then this means |xn − xn|triv = 0 so
xn = xm. Therefore (xn)n∈N converges to its common value xN = xN+1 =
. . .. We noticed during the proof that for a �nite extension L of K, the
trivial absolute value on L extends that on K, so it is the unique extension.

7. Extensions of absolute values, part 1: the field norm

Let K be a complete normed �eld and let L/K be a �nite extension.
We have seen that there is at most one absolute value on L extending that
on K; we will now show that there exists one. We will concentrate on the
case where K is a complete normed �eld with a non-trivial non-archimedean
valuation. The case of a trivial valuation has already been treated; as for the
archimedean case, another theorem of Ostrowski classi�es completely (up to
equivalence of norms) complete archimedean normed �elds:
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Theorem 7.1 (Ostrowski). Let K be a complete archimedean normed �eld.
Then K ≃ R or K ≃ C, and under this isomorphism the absolute value on
K is equivalent to the usual absolute value |·|∞ on R or C.

So in that case we already know that the absolute value extends from R
to C !

From now on we will abuse terminology and call a non-archimedean normed
�eld simply a non-archimedean �eld. We �x a complete non-archimedean
�eld K with a non-trivial absolute value and a �nite extension L. From the
uniqueness of a potential extension, we will deduce an explicit expression
for an extension of |·| to L, and then show that this expression de�nes an
absolute value that does extend that on K. But �rst, we need to build some
theory around �eld extensions.

De�nition 7.2. Let x ∈ L. Then multiplication by x is a K-linear map
ℓx : L → L. We denote by NL/K(x) ∈ K its determinant, called the (�eld)
norm of x.

It is unfortunate that this is also called the norm, it is not a norm in the
topology sense.

Proposition 7.3. Let x, y ∈ L. We have:

(1) NL/K(x) = 0 if and only if x = 0;
(2) NL/K(xy) = NL/K(x)NL/K(y);

(3) if x ∈ K then NL/K(x) = x[L:K] where [L : K] := dimK L.

Proof. (1) If x = 0 then ℓx is the 0 map so NL/K(x) = det(ℓx) = 0.
Conversely if x ̸= 0 then ℓx has the inverse ℓx−1 so has non-zero
determinant.

(2) We have ℓxy(z) = xyz = ℓx ◦ ℓy(z) hence the result by taking deter-
minants.

(3) If x ∈ K, since K acts on L by multiplication it follows that ℓx is in
any basis the diagonal matrix with entries x, so det(ℓx) = xdimK L =

x[L:K].
□

Example 13. Let K be a �eld and let d ∈ K such that x is not a square
in K. Then X2 − x has no root in K hence is irreducible, and the extension

L := K(
√
d) of K is of degree 2. It has the basis

{
1,
√
d
}
, and the matrix

in that basis of the multiplication by an arbitrary element x = a+ b {d} is(
a db
b a

)
of determinant NL/K(x) = a2 − db2.

Before saying more about the norm, we recall some facts from �eld theory:

De�nition 7.4. Let L/K be a �eld extension. An element x ∈ L is said to be
algebraic if there exists a non-zero polynomial P ∈ K[X] such that P (x) = 0
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in L. In that case, the kernel of the evaluation map evx : K[X] → L, X →
x is a non-zero principal ideal; moreover the image is the subring K[x] of
L, the smallest subring containing x. This ring is an integral domain, as a
subring of L. Therefore ker(evx) = (µK,x) for a unique monic irreducible
polynomial µK,x ∈ K[X], called the minimal polynomial of x. In particular,
we get that K[x] = K(x) is a �eld, the smallest sub�eld of L containing x,

and an isomorphism K[X]/(µK,x)
≃−→ K(x).

De�nition 7.5. A �eld extension L/K is called algebraic if every x ∈ L is
algebraic over K.

If L/K is a �nite extension, it is algebraic. Indeed, for any x ∈ L, the
in�nite family

{
xk
}
k∈N cannot be linearly independent, so there exists a

non-trivial linear combination a0x
k0 + . . . + alx

kl = 0 giving a non-zero
polynomial annihilating x. Now if L/K is an arbitrary extension, we've seen
that for x ∈ L algebraic, the extension K(x) ≃ K[X]/(µK,x) is �nite, of
degree deg(µK,x). More generally, if x1, . . . xn are algebraic over K, then the
smallest sub�eld K(x1, . . . , xn) of L containing (xi) is a �nite extension of
K; this is proven by induction using the multiplicativity of degrees.

If L/K is an algebraic extension, then

L =
⋃

K ⊆ E ⊆ L
E/K �nite

E.

Indeed, any x ∈ L is in the �nite subextension K(x).
We come now to our second characterization of the norm:

Proposition 7.6. Let L/K be a �nite extension and let x ∈ L.

(1) If L = K(x) then NL/K(x) = (−1)[L:K]µK,x(0).
(2) In general,

NL/K(x) = (NK(x)/K(x))[L:K(x)] = (−1)[L:K]µK,x(0)
[L:K(x)].

Proof. Let (ei) be an ordered basis of L/K(x) and let 1, x, . . . , xd−1 be the
natural (ordered) basis of K(x)/K, where d = degµK,x = [K(x) : K]. Write

µK,x(X) = Xd +
∑d−1

k=0 akX
k. Then (eix

k), ordered with the lexicographic

order, is an ordered basis of L/K, and we �nd that ℓx(eix
k) = eix

k+1 for
k < d− 1 and

ℓx(eix
d−1) = eix

d = −
d−1∑
k=0

akeix
k.

Denote by

Comp(µK,x) =


0 −a0
1 0 −a1

. . .
. . .

...
0 −ad−2

1 −ad−1
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the companion matrix of µK,x. We �nd that in the chosen basis,

Mat(ℓx) =

Comp(µK,x)
. . .

Comp(µK,x)


with # {ei} = [L : K(x)] blocks. The result then follows from the computa-
tion, obtained by expanding on the last column

detComp(µK,x)

= (−1)d−1+0(−ao) det(Id−1) +
∑
i>0

(−1)d−1+i(−ai) det


0
1 0

. . .
. . .

1 0


= (−1)da0.

□

Example 14. Let K be a �eld and d ∈ K not a square. For x = a+ b
√
d ∈

K(
√
d), we have either x ∈ K, which is equivalent to b = 0, or x /∈ K,

in which case K ⊂ K(x) ⊆ K(
√
d) implies K(x) = K(

√
d) and thus x is

of degree 2 over K. If x = a ∈ K, its minimal polynomial is X − a so
NK(

√
d)/K(x) = (−1)2(−a)2 = a2. If x /∈ K, we �nd that X2 − 2aX + (a2 −

db2) ∈ K[X] has x as its root so it is its minimal polynomial over K, and
thus NK(

√
d)/K(x) = (−1)2(a2 − db2) = a2 − db2. In both cases we �nd

NK(
√
d)/K(x) = a2 − db2.

We now introduce without proofs the basic notion of Galois theory, namely
Galois extensions:

De�nition 7.7. Let K be a �eld. A (�nite) Galois extension L/K is a �nite
extension with exactly [L : K] K-linear automorphisms. The group AutK(L)
is then called the Galois group Gal(L/K) of L/K.

If L/K is a �nite Galois extension, we have a third formula for the �eld
norm of an element x ∈ L, namely

NL/K(x) =
∏

σ∈Gal(L/K)

σ(x).

Proposition 7.8. Let L/K be a �nite extension, with L = K(x1, . . . xn). If
each µK,xi has no multiple roots and splits completely over L, i.e. has all its
roots in L, then L/K is Galois.

Example 15. Let K be a �eld not of characteristic 2 and let d ∈ K not
a square. Then X2 − d is separable irreducible so L := K(

√
d) is a sep-

arable extension of K. Moreover it is Galois as the other root −
√
d of

X2 − d is also in L. The extension L has two K-linear automorphisms, the
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identity and the one sending
√
d to −

√
d; those are well-de�ned because

L = K(
√
d) ≃ K[X]/(X2 − d) and are the only possibilities since any K-

linear automorphism of L leaves X2 − d �xed so has to permute its roots.
Thus

NL/K(a+ b
√
d) = (a+ b

√
d)(a− b

√
d) = a2 − db2.

Proposition 7.9. Let L/K be a �nite extension generated by elements
x1, . . . , xn whose minimal polynomials have no multiple roots (such an ex-
tension is called separable). There exists a �nite Galois extension F/K
containing L.

Sketch of proof. Add inductively the roots of µK,x1 , . . . , µK,xn that are not
already present. □

We now come to the discussion of extensions of absolute values, as promised.
To extend the absolute value to a �nite (separable) extension L/K, we might
as well extend it to a bigger, Galois extension F/K, and so we can assume
that L/K is Galois. But then we observe that if |·|L is an extension to L of
|·|K , then for any σ ∈ Gal(L/K), |σ(·)|L is still an extension of |·|K :

• If |σ(x)|L = 0 then σ(x) = 0 so x = 0;
• |σ(xy)|L = |σ(x)σ(y)|L = |σ(x)|L |σ(y)|L;
• |σ(x+ y)|L = |σ(x) + σ(y)|L ≤ |σ(x)|+ |σ(y)|L;
• Since σ preserves K by de�nition, for any x ∈ K we have |σ(x)|L =
|x|L = |x|K .

By the uniqueness of extensions, we thus get |σ(·)|L = |·|L, i.e. any K-linear
automorphism is an isometry of L. But then for all x ∈ L

∣∣NL/K(x)
∣∣
K

=
∣∣NL/K(x)

∣∣
L
=

∣∣∣∣∣∣
∏

σ∈Gal(L/K)

σ(x)

∣∣∣∣∣∣
L

=
∏

σ∈Gal(L/K)

|σ(x)|L

=
∏

σ∈Gal(E/K)

|x|L

= |x|[L:K]
L

and thus

|x|L =
∣∣NL/K(x)

∣∣ 1
[L:K]

K =
∣∣NK(x)/K(x)

∣∣ 1
[K(x):K]

K = |µK,x(0)|
1

[K(x):K]

K .

the second and last equality coming from our second point in prop. 7.6.
Using Galois theoretic arguments, we have thus identi�ed a formula for

|x|L.

Proposition 7.10. Let K be a complete non-archimedean �eld with a non-
trivial absolute value, and let L/K be a �nite extension6. Then the map

f : x 7→
∣∣NL/K(x)

∣∣ 1
[L:K]

K

6We do not assume anymore that L is separable over K.
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satis�es the �rst two axioms of an absolute value.

Proof. First, let x ∈ K. Then NL/K(x) = x[L:K] so
∣∣NL/K(x)

∣∣1/[L:K]

K
= |x|K .

Let x, y ∈ L. As NL/K respects multiplication, we �nd

f(xy) =
∣∣NL/K(xy)

∣∣ 1
[L:K]

K =
∣∣NL/K(x)NL/K(y)

∣∣ 1
[L:K]

K

=
∣∣NL/K(x)

∣∣ 1
[L:K]

K

∣∣NL/K(y)
∣∣ 1
[L:K]

K

= f(x)f(y).

□

We will �nish showing that f de�nes an absolute value in a second part,
after we have developed some more theory. We �nally mention some results
that we did not get to earlier:

Lemma 7.11. Let |·| be an absolute value on a �eld K. Then the following
are equivalent:

(1) for all n ∈ N, |n| ≤ 1;
(2) there exits B > 0 such that |n| ≤ B for all n ∈ N;
(3) for all x ∈ K, if |x| ≤ 1 then |1 + x| ≤ 1;
(4) |·| is ultrametric;
(5) the closed unit ball in K is a subring of K.

Proof. We have (1) =⇒ (2) with B = 1. Let us suppose (2). Then for any
x ∈ K with |x| ≤ 1, we �nd

|1 + x|n = |(1 + x)n| =

∣∣∣∣∣
n∑

i=0

(
n

k

)
xk1n−k

∣∣∣∣∣ ≤ B

n∑
i=0

|x|k ≤ B(n+ 1).

Taking n-th roots and letting n→ ∞, we �nd

|1 + x| ≤ lim
n→∞

(B(n+ 1))1/n = 1.

Suppose (3). Then for all x, y ∈ K, without loss of generality with |x| ≥
|y|, we �nd

|x+ y| = |x|
∣∣∣1 + y

x

∣∣∣ ≤ |x| = max(|x| , |y|)

because |y/x| ≤ 1. This shows (4).
The implication (4) =⇒ (5) has already been seen earlier. Finally,

if (5) holds then the unit ball is a ring containing 1, so it also contains
n = 1 + ·+ 1 ∈ N, hence (1) holds. □

Observe that in the proof of (4) =⇒ (5), we showed that a function
f : K → R+ satisfying

(1) f(x) = 0 if and only if x = 0;
(2) f(xy) = f(x)f(y);
(3) if f(x) ≤ 1 then f(x+ 1) ≤ 1;

is already an ultrametric absolute value.
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Corollary 7.12. If K is a normed �eld of characteristic p > 0 (meaning
that p := 1 + . . .+ 1 = 0 in K) then its absolute value is ultrametric.

Proof. For any n ∈ N, since p = 0 we have n = r for a unique r ∈
{0, . . . , p− 1}. Thus |n| ≤ max(|0| , . . . , |p− 1|) is bounded. □

Remark. On a �nite �eld, the only possible absolute value is the trivial one:
indeed, it is known that the group of invertible elements of a �nite �eld is
cyclic, so all non-zero elements are roots of unity. But a root of unity can
only have absolute value one: if ζn = 1, then 1 = |ζn| = |ζ|n, so |ζ| is an
n-th root of unity in R+, hence it must be one.

8. Aside: separable and Galois extensions

9. Aside: local compactness in normed vector spaces

Let us record some observations on local compactness for normed �elds:

Proposition 9.1. Let K be a normed �eld with a non-trivial absolute value.
Then

(1) K is locally compact if and only if every closed ball is compact, if and
only if the closed unit ball around 0 is compact;

(2) if K is locally compact, then K is complete;

Note that in (1), if K is non-archimedean this means that the valuation ring
is compact.

Remark. A normed �eld with a trivial absolute value is locally compact,
since every point x ∈ K has the compact open neighbourhood {x}.

Proof. (1). If the closed unit ball is compact then every point x has the
neighbourhood B̄(x, 1) = x + B̄(0, 1) which is compact because it is the
continuous image under translation of the compact B̄(0, 1). Clearly, if every
closed ball is compact then the closed unit ball around 0 is compact. So
it remains to show that if K is locally compact then every closed ball is
compact. Since the valuation is non-trivial, there exists γ ∈ K with |γ| > 1.
Then for any r > 0, there exists n ∈ N with |γn| ≥ r, so any closed ball is a
subset of a closed ball of the form B̄(x, |γn|), i.e. of radius belonging to |K| ⊆
R+. Therefore, it su�ces to show that such a closed ball is compact, because
then any closed ball will be a closed subset of a compact Hausdor� space
and thus also compact. Now, a ball B̄(x, |α|) for α ∈ K\ {0} is the subset
x+αB̄(0, 1), which is homeomorphic to B̄(0, 1) because translation and non-
zero scalar multiplication are homeomorphisms (with inverse the translation
by the additive inverse, or scalar multiplication by the multiplicative inverse).
So it su�ces to show that the closed unit ball around 0 is compact, or
equivalently that there is a small closed ball of non-zero radius r ∈ |K|
around 0 that is compact. Since K is locally compact, 0 admits a compact
neighbourhood K, so by de�nition there exists an open ball B(0, r) with
r > 0 around 0 with B(0, r) ⊆ K. We can then �nd n ∈ Z with 0 < |γ|n < r,
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and then B̄(0, |γn|) ⊆ B(0, r) ⊆ K is a closed subset of a compact Hausdor�
space, so it is compact.

(2). Recall that any Cauchy sequence is bounded. Therefore if (xn)n∈N ∈
KN is a Cauchy sequence, there is some C > 0 such that xn is in the compact
space B̄(0, C) for all n ∈ N. Thus (xn)n∈N has a convergent subsequence,
and the Cauchy property implies that the whole sequence converges to the
limit of that subsequence. □

Earlier, we stated a classi�cation of locally compact normed �elds. Here
we prove a weaker statement:

Theorem 9.2 (Classi�cation of locally compact normed �elds). Let K be a
normed �eld. Then K is locally compact if and only if

(1) if K is archimedean, K = R or C with an absolute value equivalent
to the usual one;

(2) the absolute value is trivial, or;
(3) if K is non-archimedean, then K is complete with a non-trivial dis-

crete valuation (i.e. there is an element of maximal absolute value
strictly less than 1) and �nite residue �eld.

Proof. If K is archimedean, then it is a complete archimedean normed �eld
so we conclude with Ostrowski's theorem; conversely, it is well-known that
R and C with the usual absolute value are locally compact.

If the absolute value on K is trivial, we've already seen that K is locally
compact.

IfK is non-archimedean complete with a non-trivial discrete valuation and
�nite residue �eld, to show that it is locally compact we have to show that
the valuation ring is compact, or equivalently complete and totally bounded.
Since the valuation ring is closed in K, it is complete. The valuation is
discrete, so we can �x a non-zero element π ∈ OK with maximal absolute
value strictly less than one; equivalently, we have a valuation v : K× → Z
such that the absolute value is given by |x| = |π|−v(x). For any ε > 0, we
have to cover OK with �nitely many open balls of radius ≤ ε. But there
exists n ∈ N with |πn| = |π|n < ε, and then for x ∈ OK ,

B̄(x, πn) = x+ πnB̄(0, 1) = x+ πnOK ⊆ B(x, ε)

is the coset of x for the ideal πnOK in OK . But we know that OK is the
disjoint union of its distinct cosets, so we have to show that the number
of distinct cosets is �nite, i.e. that the quotient ring OK/(π

n)OK is �nite.
Observe that by de�nition we have m = B(0, 1) = B̄(0, π) = πOK . Denote
by k := OK/m = OK/πOK the residue �eld; it is �nite by hypothesis.
Let q denote the cardinal of k. We will show by induction on n ≥ 1 that
#(OK/π

nOK) = qn, hence showing in particular that is �nite, which will
conclude the argument. The claim holds by de�nition for n = 1. Suppose we
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have proven the claim for some n ≥ 1. Consider the map of abelian groups

φ :

{
OK → OK

x 7→ πnx
.

We have x ∈ πOK if and only if πnx ∈ πn+1OK , so φ induces a well-de�ned
injective map

φ :

{
k → OK/π

n+1OK

x mod (π) 7→ πnx mod (πn+1)
.

Consider the canonical projection p : OK/π
n+1OK → OK/π

nOK . We claim
that ker(p) = im(φ). Indeed, if (y mod (πn+1) ∈ im(φ) then y ≡ πnx
mod (πn+1) for some x ∈ OK , and thus y ≡ 0 mod (πn). Conversely,
if y ≡ 0 mod (πn) we can write y = πnx for some x ∈ OK and then
(y mod (πn+1)) = φ(x mod (π)). Since φ is injective, im(φ) = ker(p) is
isomorphic to k, which is �nite of cardinal q. Also, OK/π

nOK is �nite of
cardinal qn by the induction hypothesis so we get that OK/π

n+1OK is �nite,
and by the �rst isomorphism theorem of cardinal #ker(p) ·#im(p) = q ·qn =
qn+1.

We now show the converse: if K is non-archimedean, locally compact,
and with a non-trivial absolute value then it must be complete, with a dis-
crete valuation and a �nite residue �eld. We already know that K must
be complete, and its valuation ring is compact, hence totally bounded. In
particular, OK can be covered by �nitely many open balls of radius 1, which
means that in the disjoint union of OK into cosets B(x, 1) = x + B(0, 1)
for the ideal m = B(0, 1), there are only �nitely many terms. This is ex-
actly saying that the quotient ring k = OK/m is �nite. Let us show that
the valuation is discrete; by contradiction, assume that there is a sequence
(γn)n∈N ∈ ON

K such that |γn| −−−→
n→∞

1 but |γn| < 1 for all n ∈ N. Since OK

is compact, we can extract a converging subsequence and thus assume that
γn −−−→

n→∞
γ ∈ OK . By continuity of the absolute value, we �nd |γ| = 1;

on the other hand, there exists N ∈ N such that for all n ≥ N , we have
|γn − γ| < 1; then by the equality case of the strong triangle inequality, for
n ≥ N

|γn| = |γn − γ + γ| = |γ| = 1

which is a contradiction. □

The statement we gave earlier further classi�ed non-archimedean locally
compact normed �eld with a non-trivial absolute value as being either of
characteristic p, isomorphic to the ring of Laurent series Fq((T )) (with the
T -adic absolute value) over the �nite �eld Fq with q = pn elements for some
n ≥ 1, or of characteristic 0, isomorphic to a �nite extension of Qp. This
further statement requires more work so we will not tackle it for now. See
exercise 9 of exercise sheet 2 for a guided proof.
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We previously discussed normed vector spaces over a complete normed
�eld K, and proved the equivalence of norms on �nite-dimensional vector
spaces in that case. In particular, when K is locally compact, we get:

Proposition 9.3. Every �nite-dimensional normed vector space V over a
locally compact normed �eld K is locally compact, and its closed balls are
compact.

Proof. Translation and scalar multiplication are continuous so by the same
argument as for normed �elds, it su�ces to show that some small closed ball
around 0 is compact. Fix a basis (ei)

n
i=1 of V and consider the sup norm

∥·∥∞ on V relative to that basis. We showed in the proof of the theorem on
equivalence of norms that there is some constant C > 0 with ∥·∥∞ ≤ C∥·∥. In
particular we have the inclusion of the closed ball B̄∥·∥(0, 1/C) ⊆ B̄∥·∥∞(0, 1)
inside the unit closed ball around 0 for ∥·∥∞. The latter is compact, since
a sequence in it has its of its coordinates in the closed unit ball in K, and
then we can extract a subsequence so that all coordinates converge in K, so
that the sequence will converge in V for ∥·∥∞. The closed ball B̄∥·∥(0, 1/C)
is thus compact as a closed subset of a compact Hausdor� space. □

There is a converse to that theorem:

Theorem 9.4 (Riesz). Let V be a normed vector space over a complete
normed �eld K with a non-trivial absolute value. If V is locally compact
then V is �nite dimensional and K is locally compact.

Proof. K is complete so for any x ∈ V \ {0}, the subspace Vect(x) is �nite-
dimensional hence closed, so it is locally compact, and it is homeomorphic
to K through the map α 7→ α · x so K is locally compact.

Since V is locally compact, the closed unit ball B̄(0, 1) in V is compact.
Let γ ∈ K with 0 < |γ| < 1. Then we have the open covering

B̄(0, 1) ⊆
⋃

x∈B̄(0,1)

B̄(x, |γ|)

so by compactness we �nd a �nite set S ⊆ V such that

B̄(0, 1) ⊆
⋃
x∈S

B̄(x, |γ|).

We can rewrite B̄(x, |γ|) = x+ γB̄(0, 1) and the above becomes

B̄(0, 1) ⊆ S + γB̄(0, 1) ⊆ Vect(S) + γB̄(0, 1).

Put W = Vect(S); since S is �nite, W is �nite-dimensional so it is closed in
V . We can iterate the above to get

B̄(0, 1) ⊆W + γB̄(0, 1) ⊆W + γ(W + γB̄(0, 1)) ⊆W + γ ·W + γ2B̄(0, 1)

=W + γ2B̄(0, 1).

and thus by induction, B̄(0, 1) ⊆ W + γnB̄(0, 1) for all n ≥ 1. This implies
that B̄(0, 1) ⊆ W = W : indeed, for any x ∈ B̄(0, 1) we can write x =
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yn + γnzn with yn ∈ W and zn ∈ B̄(0, 1); but then ∥x − yn∥ = ∥γnzn∥ ≤
|γ|n −−−→

n→∞
0 so x ∈ W . We now conclude that V = W : for any x ∈ V , we

can �nd n ∈ Z such that ∥x∥ ≤ |γ|n; but then ∥ x
γn ∥ ≤ 1 so x

γn ∈ B̄(0, 1) ⊆W ,

which implies that x ∈W . Since W is �nite-dimensional, we are done. □

Here is a counterexample in case K is not complete. Consider Q with the
usual absolute value. Then R with the usual absolute value de�nes a normed
vector space over Q, it is locally compact as usual, but it is absolutely not
of �nite dimension over Q, and Q is not locally compact as it is not even
complete.

Here is another strange phenomenon: there exists a sub�eld K of C that
is dense in C for the usual topology and such that [C : K] = 2. K is
constructed, via a �strange� embedding of R into C obtained through the
axiom of choice; see https://mathoverflow.net/a/13381. This means in
particular thatK is a normed �eld (using the restriction of the usual absolute
value to K) whose completion C is of degree 2 over K !

The above actually holds for any topological vector space over K. Re-
call that a topological vector space V over K is a vector space equipped
with a topology such that the addition and scalar multiplication V × V →
V, (x, y) 7→ x + y and K × V → V, (α, x) 7→ α · x are continuous for the
product topology on V × V and K × V , respectively.

Theorem 9.5. Let V be a Hausdor� topological vector space space over a
locally compact normed �eld K. If V is locally compact then V is �nite
dimensional.

The proof we gave generalizes nicely to that case. We also have the fol-
lowing result in the �nite-dimensional case which generalizes the theorem on
equivalence of norms:

Theorem 9.6. Let V be a �nite-dimensional Hausdor� topological space.
Then any choice of basis (ei)

n
i=1 of V gives a bijective K-linear homeomor-

phism V ≃ Kn, i.e. V has the product topology for any choice of basis.

For proofs, we defer to https://terrytao.wordpress.com/2011/05/24/

locally-compact-topological-vector-spaces/.

10. Hensel's lemma for polynomials

We start with a few general observations. Let R be a ring and let I ⊂ R
be an ideal. Then we can consider the ideal IR[X] generated by I in the
polynomial ring R[X]; by construction, we will have f(X) =

∑
aiX

i ∈
IR[X] if and only if ai ∈ I for all i. Indeed, if ai ∈ I then aiX

i ∈ IR[X]
so we get the converse direction, and if f ∈ IR[X], by de�nition we can

write f =
∑
αkQk with αk ∈ I and Qk(X) =

∑
b
(k)
i Xi ∈ R[X]. Looking

coe�cient by coe�cient, we �nd

ai =
∑
k

αkb
(k)
i ∈ I.

https://mathoverflow.net/a/13381
https://terrytao.wordpress.com/2011/05/24/locally-compact-topological-vector-spaces/
https://terrytao.wordpress.com/2011/05/24/locally-compact-topological-vector-spaces/
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The canonical projection R → R/I induces a surjective ring map R[X] →
(R/I)[X], obtained by reducing each coe�cient modulo I. The kernel of
that map is by the previous observation IR[X], and so we get a canonical
isomorphism R[X]/IR[X] ≃ (R/I)[X]. We will abuse notation and denote
by (f mod I) := (f mod IR[X]) the class of a polynomial f ∈ R[X] in the
quotient (R/I)[X].

Let K be a non-archimedean �eld. Consider the (in�nite-dimensional)
vector space K[X] of polynomials over K. We equip it with the sup norm
coming from the canonical basis

{
1, X,X2, . . .

}
, i.e. for f(X) =

∑
aiX

i ∈
K[X] we put

∥f∥ = sup |ai|
We have

f ∈ OK [X] ⇔ |ai| ≤ 1 for all i⇔ ∥f∥ ≤ 1

and f ∈ mOK [X] ⇔ ∥f∥ < 1. Similarly, let π ∈ m\ {0}. For f(X) =∑
aiX

i ∈ OK [X], we have

∥f∥∞ ≤ |π| ⇔ |ai| ≤ |π| for all i⇔ |ai/π| ≤ 1 for all i

⇔ ai/π ∈ OK for all i

⇔ ai ∈ πOK for all i

⇔ f(X) ≡ 0 mod (π)

By de�nition, the convergence of a sequence of polynomials (fn(X))n∈N =

(
∑
a
(n)
i Xi)n∈N is the uniform convergence of the sequences (a

(n)
i )n∈N ∈ KN

of coe�cients. If K is complete and we look at the subspace K[X]≤d of
polynomials of degree less than d ∈ N, this subspace is �nite-dimensional
hence complete for ∥·∥.

Recall that over any commutative ring R, we can form the division with
remainder A = QB + R of a polynomial A by a monic polynomial B with
unique quotient Q and remainder R satisfying deg(R) < deg(B). The proof
is the same as the usual proof for Euclidean division with coe�cients in
a �eld. Moreover, the degree of a polynomial does not satisfy deg(PQ) =
deg(P )+deg(Q) in general7 but only deg(PQ) ≤ deg(P )+deg(Q). However,

we still have equality if P is monic. Thus if P, P̃ are monic polynomials

of the same degree such that P = P̃Q for some polynomial Q, then �rst

deg(Q) + deg(P̃ ) = deg(P ) so deg(Q) = 0 and Q is a constant Q = c, and
then looking at the top coe�cient we �nd 1 = c · 1 hence Q = 1.

Theorem 10.1 (Hensel's lemma for polynomials, precise version). Let K
be a complete non-archimedean �eld. Let f ∈ OK [X], and assume that there
exists polynomials g1, h1 ∈ OK [X] and an element π ∈ m such that

(1) g1 is monic,

7If R contains an element a ̸= 0 such that a2 = 0, then aXn is of degree n but

(aXn) · (aXm) = a2Xm+n = 0 is of degree −∞.
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(2) the ideal generated by (g1 mod (π)) and (h1 mod (π)) is the unit
ideal (1) = OK [X]/πOK [X],

(3) f ≡ g1h1 mod π.

Then there exists unique polynomials g, h ∈ OK [X] such that

(1) g is monic,
(2) g ≡ g1 mod (π) and h ≡ h1 mod (π),
(3) f = gh.

We can reformulate condition (2) above as the existence of polynomials
(u mod (π)), (v mod (π)) such that ug1 + vh1 ≡ 1 mod (π).

Proof. We can act as if our valuation was discrete using the element π, and
do the standard proof as found e.g. in Gouvêa's book.

Let t = |π|. Condition (3) means that there exists u, v ∈ OK [X] such that
ug1 + vh1 ≡ 1 mod (π), or equivalently

∥ug1 + vh1 − 1∥ ≤ t,

while condition (2) is equivalent to the upper bound ∥f − g1h1∥ ≤ t. Let
d = deg f , m = deg g1. We will construct by induction a sequence gn, hn
satisfying

(1) gn is monic of degree m and hn is of degree ≤ d−m,
(2) |gn+1 − gn| ≤ tn and |hn+1 − hn| ≤ tn (equivalently gn+1 ≡ gn

mod (πn), hn+1 ≡ hn mod (πn)),
(3) |f − gnhn| ≤ tn (equivalently f ≡ gnhn mod (πn)).

Condition (ii) implies that (gn)n∈N and (hn)n∈N are Cauchy sequence; since
we bound the degree, they will converge to polynomials g and h of degree
≤ m and ≤ d −m. Then condition (iii) gives by continuity that f = gh,
which forces deg g = m, deg h = d−m. Finally g will be monic: since each
gn has a leading coe�cient 1 in degree d, so does g.

Assume that gn and hn have already been constructed. If there exists
gn+1 and hn+1 satisfying the above conditions, then gn+1 ≡ gn mod (πn),
and similarly for hn+1 and hn. Therefore, write gn+1 = gn+π

nr and hn+1 =
hn + πns for r, s ∈ OK [X]. We then have

gn+1hn+1 = gnhn + πn(gns+ hnr) + π2nrs

On the other hand, we already know that f ≡ gnhn mod (πn), so we can
also write f = gnhn+πnw for some w ∈ OK [X]. Since n ≥ 1, 2n ≥ n+1 so
we have

f ≡ gn+1hn+1 mod (πn+1)

⇔ gnhn + πnw ≡ gnhn + πn(gns+ hnr) mod (πn+1)

⇔ w ≡ gns+ hnr mod (π)

⇔ w ≡ g1s+ h1r mod (π).

We thus �nd that to obtain gn+1 and hn+1 iteratively from gn and hn, we
have to �nd r, s ∈ OK [X] such that
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(1) gn + πnr is monic of degree m and hn + πns is of degree ≤ d−m,
(2) w ≡ g1s+ h1r mod (π).

We have been provided with polynomials u, v ∈ OK [X] such that ug1+vh1 ≡
1 mod (π). Multiplying this by w, we �nd that

w ≡ g1uw + h1vw mod (π).

To ensure the condition on the degrees, we can perform the division with
remainder of vw by the monic polynomial gn and let r ∈ OK [X] be the
remainder, writing vw = qgn + r with q ∈ OK [X], deg r < deg gn = m.
Then gn+1 := gn + πnr has same degree and top coe�cient as gn, so it is
monic of degree m. We then let s = uw + qhn and �nd

g1s+ h1r = g1(uw + qhn) + h1(vw − qgn)

≡ g1(uw + qh1) + h1(vw − qg1) mod (π)

≡ g1uw + qg1h1 + h1vw − qg1h1 mod (π)

≡ g1uw + h1vw mod (π)

≡ w mod (π).

Finally, (f mod (πn)) is of degree less than d and f ≡ gn+1(hn + πns)
mod (πn+1) with gn+1 monic of degree m. Thus (gn+1 mod (πn+1)) is also
monic of degree m, so (hn + πns mod (πn+1)) is of degree less than d−m.
Since we only care about (hn+1 mod (πn+1)) in order to have (ii) and (iii),
we can choose a lift hn+1 ∈ OK [X] of (hn + πns mod (πn+1)) of degree less
than d−m, and we are done.

Let us conclude by showing the uniqueness. If g̃, h̃ is another solution,

we will show that necessarily g̃ ≡ g mod (πn), h̃ ≡ h mod (πn), which

will give g̃ = g, h̃ = h. This is true for n = 1 by de�nition. From g̃ ≡ g

mod (πn) and h̃ ≡ h mod (πn) we can write g̃ = g + aπn, h̃ = h + bπn for
some a, b ∈ OK [X]. But then

g̃h̃ ≡ f ≡ gh mod (πn+1)

⇔ gh+ πn(ah+ bg) ≡ gh mod (πn+1)

⇔ πn(ah+ bg) ≡ 0 mod (πn+1)

⇔ ah+ bg ≡ 0 mod (π)

⇔ ah1 ≡ −bg1 mod (π).

From ug1 + vh1 ≡ 1 mod (π), we �nd a ≡ aug1 + avh1 ≡ aug1 − bvg1
mod (π) so (g1 mod (π)) = (g mod (π)) divides (a mod (π)). Writing
this relation as

a = zg + πt

for some z, t ∈ OK [X], we �nd

g̃ ≡ g + aπn ≡ g(1 + z) + πn+1t ≡ g(1 + z) mod (πn+1)
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so (g mod (πn+1)) divides (g̃ mod (πn+1)). Since g̃ and g are monic of the
same degree we �nd g̃ ≡ g mod (πn+1). Then (h mod (πn+1)) is the unique
quotient in the division with remainder of (f mod (πn+1)) by the monic

polynomial (g mod (πn+1) = (g̃ mod (πn+1), so h ≡ h̃ mod (πn+1). □

Corollary 10.2 (Hensel's lemma for polynomials, version modulo the maxi-
mal ideal). Let K be a complete non-archimedean �eld. Let f ∈ OK [X], and
assume that there exists polynomials g0, h0 ∈ OK [X] such that

(1) g1 is monic,
(2) (g1 mod m) and (h1 mod m) are relatively prime,
(3) f ≡ g1h1 mod m.

Then there exists polynomials g, h ∈ OK [X] such that

(1) g is monic,
(2) g ≡ g1 mod m and h ≡ h1 mod m,
(3) f = gh.

Proof. Note that OK/m is a �eld, so OK/m[X] is a Euclidean domain and it
makes sense to ask that (g1 mod m) and (h1 mod m) are relatively prime.
This means that there exists u ∈ OK [X], v ∈ OK [X] such that ug1+vh1 ≡ 1
mod m. Now put t = max(∥f − g1h1∥, ∥ug1 + vh1 − 1∥) < 1. If t = 0 there
is nothing to do. Otherwise, since t is a maximum, it is the absolute value
of an element π ∈ m\ {0}, and by construction

∥f − g1h1∥ ≤ |π|
∥ug1 + vh1 − 1∥ ≤ |π| .

We conclude with the theorem by observing that being equivalent modulo π
implies being equivalent modulo m. □

Remark. We furthermore get from the proof that with t := max(∥f −
g1h1∥, ∥ug1 + vh1 − 1∥) < 1, g and h are the unique polynomials such that
g is monic, f = gh, and ∥g − g1∥ ≤ t, ∥h− h1∥ ≤ t.

11. Extension of absolute values, part 2: Gauss norms and the

lemma of Hensel-Kurschak

Let us come back to the norm we de�ned on polynomials:

De�nition 11.1. Let K be a non-archimedean �eld and let r > 0. The
(r)-Gauss norm on K[X] is the map ∥·∥r : K[X] → R+ given by

∥
∑

akX
k∥r = max(|ak| rk).

We also put

∥
∑

akX
k∥ := ∥

∑
akX

k∥1 = max(|ak|).
which we call the Gauss norm.

Proposition 11.2 (Gauss' lemma). The Gauss norms are absolute values
on K[T ] extending that on K, and they extend uniquely to absolute values
on K(T ) extending that on K.
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Proof. The second statement is routine, so we focus on the �rst. The triangle
inequality, the fact that ∥f∥r = 0 if and only if f = 0 and that the restriction
of ∥·∥r to K is |·| is clear. Thus we have to show that ∥·∥r is multiplicative.
We show the case r = 1. It su�ces to show that if ∥f∥ = 1 and ∥g∥ = 1 then
∥fg∥ = 1; this will turn out to be some version of Gauss' lemma. Indeed, ∥f∥
and ∥g∥ are maxima, so there exists γ, δ ∈ K such that ∥f∥ = |γ|, ∥g∥ = |δ|.
Thus ∥f/γ∥ = 1, ∥g/δ∥ = 1 and then

∥fg∥
∥f∥∥g∥

= ∥f
γ
· g
δ
∥ = 1.

Observe that ∥f∥ = 1 is equivalent to f ∈ OK [X], together with the existence
of a coe�cient of f with absolute value exactly 1. In other words,

∥f∥ = 1 ⇔ f ̸≡ 0 mod m ⇔ f /∈ mOK [X].

Thus if ∥f∥ = 1 and ∥g∥ = 1, the product of the two non-zero polynomials (f
mod m) and (g mod m) with coe�cients in the �eld OK/m is the non-zero
polynomial (fg mod m), i.e. ∥fg∥ = 1. □

Remark. One can show more generally that the similarly-de�ned Gauss norm
∥·∥r de�nes an absolute value on the subring of power series K⟨X⟩r :={∑

akX
k ∈ K[[X]], |ak| rk −−−→

n→∞
0
}

⊆ K[[X]] converging on the closed

unit disk of radius r, and the latter is moreover complete for that absolute
value. However, one has to be careful: this absolute value extends the abso-
lute value on K, and thus has nothing to do with the T -adic absolute value
on K[[T ]] !

Corollary 11.3. Let K be a non-archimedean �eld and let f ∈ OK [X].
Then f is irreducible in OK [X] if and only if ∥f∥ = 1 and f is irreducible
in K[X].

Proof. (⇐) If f = gh inOK [X], then without loss of generality g is a constant
c ∈ K. But then |c| = ∥g∥ ≤ 1, ∥h∥ ≤ 1 and |c| ∥h∥ = ∥f∥ = 1 so |c| = 1,
which shows that c ∈ O×

K . This proves that f is irreducible in OK .
(⇒)If f = gh in K[X], there is γ, δ ∈ K such that ∥g∥ = |γ|, ∥h∥ = |δ|.

We can then write
f

γδ
=
g

γ
· h
δ

with g/γ, h/δ ∈ OK [X] and |γδ| = ∥g∥∥h∥ = ∥f∥ = 1 so that γδ ∈ O×
K . As

f is irreducible, so is f/γδ, so either g/γ or h/δ is constant invertible in OK ,
which means that g or h is constant non-zero in K[X]. □

Corollary 11.4. Let K be a non-archimedean �eld with residue �eld k and
let f ∈ OK be a monic polynomial. If f is irreducible in k then f is irreducible
over K.

Proof. See exercise sheet 2. □
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The following lemma will be crucial in showing the triangle inequality for

our candidate absolute value
∣∣NL/K(·)

∣∣1/[L:K]

K
.

Lemma 11.5 (Hensel-Kurschak). Let K be a complete non-archimedean
�eld. If f(X) =

∑n
k=0 akX

k is irreducible then ∥f∥ = max(|a0| , |an|).

Before going to the proof, we state some corollaries explaining the impor-
tance of the lemma:

Corollary 11.6. Let K be a complete non-archimedean �eld. If f ∈ K[X]
is irreducible and monic then

f ∈ OK [X] ⇔ |f(0)| ≤ 1.

De�nition 11.7. Let L/K be a �eld extension whereK is a non-archimedean
�eld. An element x ∈ L is called integral over OK if µK,x ∈ OK [X].

Corollary 11.8. Let K be a complete non-archimedean �eld and let L/K be
a �nite extension. Then x ∈ L is integral over OK if and only if NL/K(x) ∈
OK , if and only if |NLK

(x)| ≤ 1.

Proof of the corollary. We have∣∣NL/K(x)
∣∣ ≤ 1 ⇔ |µK,x(0)|[L:K(x)] ≤ 1 ⇔ |µK,x(0)| ≤ 1.

□

Proof of the lemma. Since ∥f∥ is a maximum, we can renormalize so that
∥f∥ = 1, in which case we have to show that max(|an| , |a0|) = 1. Suppose,
in the aim of obtaining a contradiction, that |a0| , |an| < 1. Then, we let

r = min {k, |ak| = 1} ≥ 1.

For k < r we have |ak| < 1 and thus

f(X) =

n∑
k=0

akX
k ≡ arX

r +
∑
k>r

akX
k mod m

≡ Xr(ar +
∑
k>r

akX
k−r) mod m

Since ar ̸≡ 0 mod m, this is a factorization of (f mod m) into coprime poly-
nomials, one of them monic of degree r; therefore we can lift this factorization
to a factorization f = gh with g monic of degree r, where deg f > r > 0.
This is a contradiction to the irreducibility of f . □

Theorem 11.9 (Extension of absolute values). Let K be a complete non-
archimedean �eld and let L/K be a �nite extension. Then

f : x 7→
∣∣NL/K(x)

∣∣ 1
[L:K]

K

is the unique absolute value on L extending that on K.



BMST 2025: INTRODUCTION TO p-ADIC NUMBERS 43

Proof. From the previous discussions, it remains only to show the triangle
inequality. But we have already shown that f is multiplicative and satis�es
f(x) = 0 ⇔ x = 0; therefore it su�ces to show that f(x) ≤ 1 =⇒ f(x+1) ≤
1. But, we have

f(x) =
∣∣NL/K(x)

∣∣[L:K] ≤ 1 ⇔ x is integral over K

⇔ µK,x(X) ∈ OK [X]

⇔ µK,x(X − 1) ∈ OK [X]

⇔ 1 + x is integral over K

⇔ f(1 + x) ≤ 1.

□

Corollary 11.10. Let K be a complete non-archimedean �eld and let L/K
be an algebraic extension. There is a unique absolute value on L extending
that on K.

Proof. By uniqueness, for x ∈ L the expression f(x) = |x|E is independent
of any �nite subextension L/E/K containing x: if L/E′/E/K are two inter-
mediate �nite subextensions then (|·|E′)|E = |·|E since both restrict further
to |·|K on K. To check that f satis�es the axioms of an absolute value,
pick any two elements x, y ∈ L and observe that the corresponding axioms
can be checked on the �nite extension K(x, y)/K, for which they hold since
f|K(x,y) = |·|K(x,y). □

In particular, the algebraic closure of K has a unique absolute value ex-
tending that on K. We can extract from the two previous proofs the follow-
ing:

Corollary 11.11. Let K be a complete non-archimedean �eld and let L/K
be an algebraic extension. The valuation ring of L is the set of elements
x ∈ L integral over K.

12. Ramfication index and residual degree, part I

De�nition�Proposition 12.1. Let L/K be an extension of non-archimedean
�elds8. Write κ(K) = OK/mK and κ(L) = OL/mL for their respective
residue �elds. Then κ(L) is a �eld extension of κ(K), of degree f := [κ(L) :
κ(K)] called the residual degree. Moreover, f ≤ [L : K].

Proof. The kernel of the composite map OK → OL → κ(L) is exactly
{x ∈ OK , |x| < 1} = mK so we have an injective morphism of rings κ(K) →
κ(L). Let x1, . . . , xf of κ(L) over κ(K) and choose a family of lifts (xi) ∈ OL.

8We've just seen that if K is a complete non-archimedean �eld, any �nite extension

L/K is a �nite extension of non-archimedean �elds, i.e. admits an absolute value extending

that on K.
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We claim that (xi) is linearly independent over K, so that f ≤ [L : K]. In-
deed, if not then let ∑

λixi = 0

be a (�nite!) linear relation with λi ∈ K not all zero. Let i0 be an index
such that |λi0 | = max(|λi|) > 0. Then

xi0 +
∑
i ̸=i0

λi
λi0

xi = 0

is a linear relation with coe�cients in OK , which reduces in κ(L) to a non-
trivial linear relation between the xi. This is a contradiction. □

De�nition�Proposition 12.2. Let K be a complete non-archimedean �eld
with a discrete valuation v : K× → Z. This means that K has a uni-
formizer π, and |x|K = |π|−v(x) for all x ∈ K, or equivalently v(x) =
− log(|x|K)/ log(|π|K). Let L/K be a �nite extension of degree n. Let

w : L× → R denote the valuation associated to |·|L =
∣∣NL/K(·)

∣∣1/n
K

extending
v, namely

y 7→ −
log(|y|L)
log(|π|K)

= − 1

n
·
log(

∣∣NL/K(y)
∣∣
K
)

log(|π|K)
∈ 1

n
Z ⊆ R

Then Z = im(v) ⊆ im(w) ⊆ 1/nZ are discrete subgroups of R, so there exists
e ∈ Z dividing n such that im(w) = 1

eZ and w is discrete. Equivalently, L

has a uniformizer ω with |ω|L = |π|1/eK ≥ |π|K . The number e is called the
rami�cation index of L/K.

Remark. More generally, if L/K is an extension of non-archimedean �elds
with associated valuations v : K× → R and w : L× → R, we can de�ne the
rami�cation index

ew/v := [w(L×) : v(K×)] = [
∣∣L×∣∣

L
:
∣∣K×∣∣

K
]

which is compatible with the previous de�nition.

Remark. Let K be a complete non-archimedean �eld with a discrete valua-
tion and let L/K be a �nite extension of degree n. We will see later that in
this case ef = n.

De�nition 12.3. Let K be a complete non-archimedean �eld and let L/K be
an algebraic extension. If e = 1 and the residue �eld extension is separable,
we say that the extension is unrami�ed. On the other hand, if f = 1, we say
that the extension is totally rami�ed.

Remark. The separability condition is automatic if the residue �eld of K is
of characteristic 0 or a �nite �eld, or more generally of characteristic p such
that any element has a p-th root.

Proposition 12.4. Let K be a complete non-archimedean �eld with a dis-
crete valuation v : K× → Z. Then K admits totally rami�ed extensions of
all degrees n = e ≥ 1.
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Proof. We have shown in the exercise sheet that a polynomial satisfying
the Eisenstein criterion is irreducible. Fix a uniformizer π ∈ mK . Then
for n ≥ 1, the polynomial Xn − π satis�es the Eisenstein criterion, so the
extension L = K(π1/n) is of degree n. Moreover, it is of rami�cation degree

e ≤ n, but w(π1/n) = 1
nw(π) =

1
nv(π) =

1
n so that e ≥ n and thus e = n.

This shows that the extension is totally rami�ed by the relation ef = n (the
proof of which we postponed). □

Corollary 12.5. Let K be a complete non-archimedean �eld with a discrete
valuation v : K× → Z. Then its algebraic closure K is not �nite over K,

and the valuation w : K
× → R satis�es im(w) = Q; equivalently, if π ∈ mK

is a uniformizer of K, then im(|·|K) = |π|QK ∪ {0}.
Proof. It su�ces to prove the last statement; taking over notations from
the previous proof, we �nd that w((π1/b)a) = a/b so the image contains Q.
On the other hand, for any x ∈ K

×
, w(x) can be computed in the �nite

extension K(x), and thus belongs to 1
[K(x):K]Z ⊆ Q. □

Proposition 12.6. Let K be a complete non-archimedean �eld with residue
�eld k. If k admits an extension k′ of degree n, then K admits an unrami�ed
extension L of degree n with residue �eld κ(L) = k′. In particular if k is not
algebraically closed, or if the algebraic closure of k is not �nite over k, then
K has the same property.

Proof. We can write k′ = k(α1, · · · , αl). By induction it thus su�ces to treat
the case l = 1. Suppose k′ = k(α). Choose a monic lift P ∈ OK [X] of the
minimal polynomial µk,α ∈ k[X]. We have shown in the previous section
that P is necessarily irreducible in K[X], and has degree n. Consider the
extension L = K[X]/(P ) and let β denote the class of X in L, so that
L = K[β]. Then L is an extension of degree n of K. Moreover, the minimal
polynomial of β is monic with coe�cients in OK , so that β ∈ OL as we
saw in the previous section. Denote by f the residual degree. Since κ(L)
contains the element β which is a root of P = µk,α, we �nd a �eld embedding
k[α] ≃ k[X]/(µk,α) → κ(L) sending α to β. This shows that f ≥ n, and
thus f = n and this embedding is an isomorphism. □

Remark. The above proposition applies even when the valuation is not dis-
crete, at the expense of needing to describe the �nite extensions of the residue
�eld.

13. Onto Cp

De�nition 13.1. Let K be a �eld, let L/K be an extension, and let α, α′ ∈ L
be algebraic. We say that α and α′ are conjugate over K if µK,α = µK,α′,
i.e. if α and α′ are roots of the same monic irreducible polynomial.

Remark. If K is a complete non-archimedean �eld and L/K an algebraic
extension, then any two elements in L conjugated over K have the same
absolute value, by our explicit formula for the absolute value.
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Lemma 13.2. Let K be a complete non-archimedean �eld and let f ∈ K[X]
be a monic polynomial of degree n. For any root α of f in K we have
|α| ≤ ∥f∥.
Proof. Write f(X) =

∑n
k=0 akX

k. Since f is monic we have ∥f∥ ≥ 1. For

all k we have either |ak| ≤ 1 in which case |ak|1/(n−k) ≤ 1 ≤ ∥f∥ or |ak| > 1

in which case |ak|1/(n−k) ≤ |ak| ≤ ∥f∥. Now if |α| > ∥f∥, then in particular

|α| > |ak|1/(n−k) for all k < n, which we can rewrite as |ak| < |α|n−k. This
implies that

|α|n = |αn| =

∣∣∣∣∣−
n−1∑
k=0

akα
k

∣∣∣∣∣ < max(|ak| |α|k) ≤ max(|α|n−k |α|k) = |α|n ,

a contradiction. □

Lemma 13.3. Let K be a complete non-archimedean �eld and let f, g ∈
K[X] be monic polynomials of the same degree. Let α ∈ K be a root of f .
Then

|g(α)| ≤ ∥f − g∥∥f∥n−1

Proof. Write f =
∑
akX

k, g =
∑
bkX

k. Then

g(α) = g(α)− f(α) =

n−1∑
k=0

(bk − ak)α
k,

so that
|g(α)| ≤ ∥f − g∥ max

k=0,...,n−1
(|α|k).

But since f is monic we have |α| ≤ ∥f∥, and thus |α|k ≤ ∥f∥k, while ∥f∥ ≥ 1
implies that ∥f∥k ≤ ∥f∥n−1 for all k = 0, . . . , n− 1. This gives the claimed
inequality. □

Proposition 13.4 (Continuity of roots). LetK be a complete non-archimedean
�eld and let f, g ∈ K[X] be monic polynomials of the same degree. Then for
each root α ∈ K of f there exists a roots β ∈ K of f such that

|α− β| ≤ ∥f − g∥1/n∥f∥

Proof. Write g(X) =
∏n

i=1X − βi over K. Suppose by contradiction that

|α− βi| > ∥f − g∥1/n∥f∥ for all i. Then we get

|g(α)| =
∏

|α− βi| > ∥f − g∥∥f∥n,

which contradicts the lemma since ∥f∥ ≥ 1, which implies ∥f∥n ≥ ∥f∥n−1.
□

Corollary 13.5. Let K be a complete non-archimedean �eld and let (fi)i≥1 ∈
K[X]N be a sequence of monic polynomials of the same degree n which con-
verges (with respect to the Gauss norm) to a polynomial g ∈ K[X]. Let
αi be a root of fi in K for each i. Then the sequence (αi)i≥1 contains a
subsequence which converges to a root of g.
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Proof. The polynomial g must be monic of degree n. We apply the proposi-
tion: for each i, there exists a root βi of the (�xed!) polynomial g in K such
that

|αi − βi| ≤ ∥g − fi∥1/n∥fi∥.
Since g has at most n distinct roots, there must exists a root β of g and a
strictly increasing map φ : N → N such that βφ(i) = β and thus∣∣αφ(i) − β

∣∣ ≤ ∥g − fφ(i)∥1/n∥fφ(i)∥.

By the strong triangle inequality, since fi converges to g we have ∥fφ(i)∥ =
∥g∥ for i big enough. Thus, for i big enough we �nd∣∣αφ(i) − β

∣∣ ≤ ∥g − fφ(i)∥1/n∥g∥
which tends to 0 when i goes to ∞, as claimed. □

De�nition 13.6. We denote by Cp the completion of the algebraic closure
of Qp for the extendend p-adic absolute value. More generally, if K is a

complete non-archimedean �eld, we will denote by CK the completion of K
for the extended absolute value.

We observed that for a non-archimedean �eld, the absolute value of the
limit of a sequence is equal to the absolute value of all its terms after a certain
point. Therefore, going from a non-archimedean �eld to its completion does
not change the value group of the absolute value. As a consequence the value
group of the p-adic absolute value on Cp is pQ.

Theorem 13.7. Let K be a complete non-archimedean normed �eld. Then

CK = K̂ is complete and algebraically closed, and it is the smallest complete
and algebraically closed non-archimedean �eld containing K isometrically.

Proof. Let f ∈ CK [X] be a monic polynomial of degree n ≥ 1. We must
�nd a root of f ∈ CK . Since K is dense in CK by de�nition, we can �nd
a sequence (fi)i≥1 ∈ K[X]N of monic polynomials of degree n converging
to f . But then each fi has all its roots already in K. Applying the above
corollary, we �nd a sequence (αφ(i)) where each αφ(i) ∈ K is a root of fφ(i),

converging to a root of f in CK . But K ⊂ CK and CK is complete, hence
closed in CK , so the root belongs to CK , as we needed.

The second statement is left to the reader. □

Proposition 13.8. Let K be a complete non-archimedean �eld with residue
�eld κ(K). Then κ(K) is an algebraic closure of κ(K).

Proof. We �rst show that κ(K) is algebraically closed. Let p ∈ κ(K)[X] be a
monic irreducible polynomial. We can lift p to a monic polynomial p ∈ OK ,
which must also be irreducible in OK and thus also in K since ∥p∥ = 1. This
implies that deg p = deg p = 1.

We now show that κ(K) is algebraic over κ(K). Let x ∈ κ(K) and lift it
to x ∈ OK . Then x is integral over OK so µK,x ∈ OK [X]. Reducing back
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we �nd that µK,x is a monic polynomial over κ(K) such that µK,x(x) = 0,
so we are done. □

Lemma 13.9. Let L/K be an extension of non-archimedean �elds such that
K is dense in L. Then K and L have the same residue �elds. In particular,
if K is any non-archimedean �eld, then K and its completion have the same
residue �eld.

Proof. The map between residue �elds is a map of �elds hence injective. It
su�ces to show that it is surjective. Let x ∈ κ(L) with lift x ∈ OL. Then
by density there exists y ∈ K such that |y − x| < |x| ≤ 1. By the strong
triangle inequality, we get that |y| = |x| ≤ 1, and thus y ∈ OK . Moreover
we can write x = y + (y − x) where y ∈ mL by construction, which gives in
κ(L) that x = y is in the image of κ(K) → κ(L). □

Corollary 13.10. Let K be a complete non-archimedean �eld with residue
�eld κ(K). Then κ(CK) is an algebraic closure of κ(K). In particular, the
residue �eld of Cp is Fp.

We �nish this section with two things: �rst we introduce Krasner's lemma
and its consequences; the lemma is useful in a lot of situations. Then we
examine whether it was actually needed to complete the algebraic closure, i.e.
whether the algebraic closure can be complete; we show that the algebraic
closure of a complete non-archimedean �eld is never complete.

De�nition 13.11. Let K be a �eld. A polynomial P ∈ K[X] is said to be
separable if it has no multiple root in any algebraically closed �eld containing
K, which is equivalent to the condition gcd(P, P ′) = 0.

Let L/K be an extension. An algebraic element x ∈ L is said to be sep-
arable if its minimal polynomial is separable, or equivalently if there is a
separable polynomial P ∈ K[X]\ {0} such that P (x) = 0.

Remark. If P is irreducible over K, then detP ′ < degP so gcd(P, P ′) =
1 ⇔ P ′ ̸= 0. If K is of characteristic 0, this is always true, i.e. an irreducible
polynomial is separable. However, in characteristic p there are counter-
examples: consider the �eld extensions Fp ⊆ Fp(T

p) ⊆ Fp(T ). Then one can
show that the polynomial P (X) = Xp − T p ∈ Fp(T

p)[X] is irreducible, but
it is not separable since over Fp(T ) it obtains the factorization Xp − T p =
(X − T )p showing that T is a multiple root of order p.

De�nition 13.12. Let K be a complete non-archimedean �eld and let α ∈ K
be a separable element of degree > 1. We put

r(α) := inf
α′ conjugate to α

α′ ̸=α

∣∣α′ − α
∣∣

which we call the �Krasner radius� of α.9

9This is non-standard terminology.
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Lemma 13.13 (Krasner's lemma). In the above situation, if β ∈ K is such
that β ∈ B(α, r(α)) then K(α) ⊆ K(β), or in other words α can be written
as a polynomial in β with coe�cients in K.

Proof. Put L = K(β) and suppose by contradiction that α ̸= L. Consider
the extension L(α)/L, which by hypothesis is of degree m > 1. Then µL,α
is of degree m and divides µK,α, so it also has only simple roots, and has at

least two of them. Thus, we can pick α′ ∈ K, α′ ̸= α a conjugate of α over
L. But then µL,α(X +β) is monic irreducible with coe�cients in L, and has
the two distinct roots α− β and α′ − β; this shows that α− β is conjugated
to α′ − β over L. The remark above then implies that∣∣α′ − β

∣∣ = |α− β|

so by the strong triangle inequality∣∣α− α′∣∣ ≤ max(|α− β| ,
∣∣α′ − β

∣∣) < r(α),

a contradiction. □

Corollary 13.14. Let K be a complete non-archimedean �eld, let f ∈ K[X]
be a separable monic irreducible polynomial of degree n > 1 with a root
α ∈ K. There exists ε > 0 such that for every monic polynomial g ∈ K[X]
of degree n satisfying ∥f − g∥ < ε, g is irreducible over K and has a root in
β ∈ K such that β ∈ B(α, r(α)) and K(β) = K(α).

More precisely, we can take ε = ∥f∥−nr(α)n.

Proof. The proposition on continuity of roots gives the existence of a root β
of any monic polynomial g of degree n such that

|α− β| ≤ ∥f − g∥1/n∥f∥.

Thus if ∥f − g∥ < ε := ∥f∥−nr(α)n we �nd

|α− β| < r(α),

and Krasner's lemma then gives that K(α) ⊆ K(β). From there we get

n = deg g ≥ [K(β) : K] ≥ [K(α) : K] = deg f = n

so we have equality everywhere, which shows that g is irreducible (it is
monic and has the same degree as the minimal polynomial of its root β) and
K(β) = K(α). □

Remark. It can be shown that α is a separable algebraic element if and only
if K(α) is a separable extension. In particular, in the conclusion above, we
�nd β ∈ K(α) must be separable, so that g is separable as well.

Theorem 13.15. Let K be a complete non-archimedean �eld of character-
istic 0 with a non-trivial absolute value. If [K : K] = ∞ then K is not
complete.
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Proof. SinceK is of characteristic 0, any element x ∈ K is separable. Choose
a sequence (xn)n≥0 of elements in K, with x0 = 1, that forms a linearly
independent family over K. We then de�ne inductively c1 = 1, c2, . . . , cn, . . .
non-zero elements of K such that

|cn+1| |xn+1| < max

(
1

2n+1
, |cnxn| , r

(
n∑

k=1

ckxk

))

where r denotes the Krasner radius. Note that
∑n

k=1 ckxk ∈ K is of degree
> 1, i.e. does not belong to K. Indeed, as x0 = 1 ∈ K, if the sum was in K,
there would exist b ∈ K with b =

∑n
k=1 ckxk or equivalently

−bx0 +
n∑

k=1

ckxk = 0.

Since the xi are linearly independent and ck ̸= 0 for all k by construction,
this is a contradiction. Thus the Krasner radius above is well-de�ned.

We want to show that the series
∑

k≥1 ckxk does not converge in K. If it

did, then letting x ∈ K denote its limit, we would have for all n ≥ 1:∣∣∣∣∣x−
n∑

k=1

ckxk

∣∣∣∣∣ =
∣∣∣∣∣∑
k>n

ckxk

∣∣∣∣∣ ≤ |cn+1xn+1| < r

(
n∑

k=1

ckxk

)
so by Krasner's lemma

∑n
k=1 ckxk ∈ K(x). Since every cn is non-zero, we

obtain �rst that c1x1 ∈ K(x) so x1 ∈ K(x), and then by induction xn ∈ K(x)
for all n ≥ 1. But this is impossible as [K(x) : K] < ∞, while (xi) is an
in�nite linearly independent family. □

Remark. With some modi�cations and more knowledge about separable ex-
tensions, one can remove the hypothesis on the characteristic in the above
theorem. See [BGR84, �3.4.3, Lemma 1].

Remark. On the other hand, if K has the trivial absolute value, then K
is automatically complete, and its algebraic closure must have the trivial
absolute value hence also be complete, independently of its degree over K.

Corollary 13.16. The �eld Qp is not complete.

Proof. We have shown with the theory of rami�cation index that Qp has

totally rami�ed extensions of arbitrary degree, which implies that [Qp : Qp] =
∞. □

14. Finite fields

15. Taxonomy of the finite extensions of Qp

Proposition 15.1. Let K be a complete non-archimedean �eld with a dis-
crete valuation and let L/K be an algebraic extension. Then ef = [L : K].
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Remark. The above says that if L/K is the completion of an algebraic exten-
sion with �nite residue degree and rami�cation index, it is actually a �nite
extension.

Proof. We have shown that if [L : K] is �nite then f and e are �nite. Thus
if e or f is in�nite then [L : K] is in�nite and the relation is trivially true.
Suppose now that e and f are �nite. Keeping notations as above, we �x
π ∈ OK with v(π) = 1 and ω ∈ OL with w(ω) = 1/e. Note that by
de�nition, mL is the ideal generated by ω. Since w(ωe/π) = e · 1/e− 1 = 0,
we have ωe/π ∈ O×

L so that ωeOL = πOL.
Observe that OL/(ω

e) = OL/(π) is naturally a κ(K) := OK/(π)-vector
space. We will show that OL/(π) = OL/(ω

e) is of dimension ef < infty
over κ(K). We have a descending chain of sub-vector spaces

OL/ω
eOL ⊃ ωOL/ω

eOL ⊃ · · · ⊃ ωe−1OL/ω
eOL ⊃ {0} .

The quotient of two successive steps is

ωkOL/ω
eOL

ωk+1OL/ωeOL
≃ ωkOL/ω

k+1OL

Moreover, the morphism

OL → OL

x 7→ ωkx

induces a well-de�ned (non-zero hence injective) morphism κ(L) → OL/ω
k+1OL

sending x to ωkx. Its image is thus ωkOL/ω
k+1OL, so we have an isomor-

phism of κ(K)-vector spaces κ(L)
≃−→ ωkOL/ω

k+1OL. Finally, we get

dim(OL/ω
eOL) =

e−1∑
k=0

dim(ωkOL/ω
eOL)− dim(ωk+1OL/ω

eOL)

=
e−1∑
k=0

dim(ωkOL/ω
k+1OL)

= edim(κ(L))

= ef.

We now relate the dimension of OL/(π), which is �nite equal to ef , to
[L : K]. Pick a basis x1, . . . , xef of OL/(π) over κ(K) and choose a family of
lifts (xi) ∈ OL. We claim that (xi) is linearly independent over K. Indeed,
if ∑

λixi = 0

is a linear relation with λi ∈ K not all zero, put k = min(v(λi)). Then for
every i, v(π−kλi) ≥ 0 so that π−kλi ∈ OK , and there exists an index i0 such
that v(π−kλi0) = 0, so that π−kλi0 ̸≡ 0 mod π. Thus∑

π−kλixi



52 ADRIEN MORIN

is a linear relation with coe�cients in OK , which reduces modulo π to a

linear relation
∑
πkλixi over κ(K) with at least one non-zero coe�cient,

namely its coe�cient on xi0 . This is a contradiction.
Consider the sub-K-vector space V of L generated by the (xi), which is

of dimension ef by the previous paragraph. We will show that it is equal to
L, concluding that ef = [L : K] < ∞. It su�ces to show that any x ∈ OL

belongs to V . For x ∈ OL, we can lift an expression of x in the basis xi to
an expression

x =
∑

aixi + y

where y ∈ πOL and ai ∈ OL. This means that OL ⊆ V + πOL. Since V is
stable by scalar multiplication, iterating we �nd

OL ⊆ V + πOL ⊆ V + πV + . . .+ πk−1V + πkOL = V + πkOL

for all k ≥ 1. We reformulate this as saying that for any x ∈ OL and
k ≥ 0, there exist vk ∈ V , yk ∈ πkOL such that x − vk = yk. Since
w(yk) ≥ k −−−→

k→∞
∞, this means that vk −−−→

k→∞
x so that x ∈ V . But V is

�nite-dimensional so it is closed, and thus x ∈ V . □

16. Monsky's theorem

Reference: [AZ18, Chapter 22: one square and an odd number of trian-
gles].

We need the extension of the 2-adic valuation on Q to a valuation v :
R → Γ ∪ {∞}. Alternatively, in any �gure constructed, the extension of
Q generated by the coordinates of the vertices of the �gure is an extension
of �nite type of Q, so the tools we have developed show that |·|2 has an
extension to that �eld, which su�ces for the proof.

17. p-adic methods applied to Diophantine equations

References:

(1) Keith Conrad's note �Selmer's exampe� https://kconrad.math.uconn.
edu/blurbs/gradnumthy/selmerexample.pdf (this one necessitates
some algebraic number theory for the second part)

(2) Keith Conrad's note �Integral solutions to x3 − 2y3 = 1� https:

//kconrad.math.uconn.edu/blurbs/gradnumthy/x3-2y3=1.pdf

(3) [Coh07, Prop. 4.5.17]. Everything from 4.5 to the end of chapter 6
might be relevant; it is a matter of picking something accessible with
p-adic methods and not too much (or none) algebraic number theory.
Prop 4.5.17 is expanded upon in chapter 3 of Josha Box's unpub-
lished bachelor thesis �An introduction to Skolem's p-adic method
for solving Diophantine equations� at the University of Amsterdam;
this might give some ideas and references for generalizations.

https://kconrad.math.uconn.edu/blurbs/gradnumthy/selmerexample.pdf
https://kconrad.math.uconn.edu/blurbs/gradnumthy/selmerexample.pdf
https://kconrad.math.uconn.edu/blurbs/gradnumthy/x3-2y3=1.pdf
https://kconrad.math.uconn.edu/blurbs/gradnumthy/x3-2y3=1.pdf
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18. Tate algebras

References:

(1) Piotr Achinger's notes [Ach21, Chapter 1-3]
(2) Their source [Bos14, Sections 1 and 2]
(3) [BGR84] (warning, this one has way too much material, and is more

a reference text to be cited than a textbook to be read).
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